Loading…
Effect of Heat Input on Mechanical and Metallurgical Properties of Friction Stir Welded AA6061-10% SiCp MMCs
Metal matrix composites (MMCs) reinforced with SiC particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural material...
Saved in:
Published in: | Journal of materials engineering and performance 2012-11, Vol.21 (11), p.2417-2428 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal matrix composites (MMCs) reinforced with SiC particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural material needs proper development of a suitable joining process. In this investigation, an attempt was made to study the effect of heat input on the evolution of microstructure in weld region of friction stir welded AA6061-10% SiCp MMCs. The tensile properties of the joints were evaluated and they are related with microstructure and heat input of the process. The microstructure characterization of the weld zone shows evidence of a substantial grain refinement of the aluminum matrix and fracturing of reinforcement particles due to dynamic recrystallization induced by the plastic deformation and frictional heating during welding. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-012-0176-5 |