Loading…

Multivariable norm optimal and parameter optimal iterative learning control: a unified formulation

This article investigates the two paradigms of norm optimal iterative learning control (NOILC) and parameter optimal iterative learning control (POILC) for multivariable (MIMO) ℓ-input, m-output linear discrete-time systems. The main result is a proof that, despite their algebraic and conceptual dif...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control 2012-08, Vol.85 (8), p.1010-1025
Main Author: Owens, D.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article investigates the two paradigms of norm optimal iterative learning control (NOILC) and parameter optimal iterative learning control (POILC) for multivariable (MIMO) ℓ-input, m-output linear discrete-time systems. The main result is a proof that, despite their algebraic and conceptual differences, they can be unified using linear quadratic multi-parameter optimisation techniques. In particular, whilst POILC has been naturally regarded as an approximation to NOILC, it is shown that the NOILC control law can be generated from a suitable choice of control law parameterisation and objective function in a multi-parameter MIMO POILC problem. The form of this equivalence is used to propose a new general approach to the construction of POILC problems for MIMO systems that approximates the solution of a given NOILC problem. An infinite number of such approximations exist. This great diversity is illustrated by the derivation of new convergent algorithms based on time interval and gradient partition that extend previously published work.
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2012.673136