Loading…
Detecting humans using luminance saliency in thermal images
This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which ha...
Saved in:
Published in: | Optics letters 2012-10, Vol.37 (20), p.4350-4352 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093 |
container_end_page | 4352 |
container_issue | 20 |
container_start_page | 4350 |
container_title | Optics letters |
container_volume | 37 |
creator | Ko, ByoungChul Kim, DeokYeon Nam, JaeYeal |
description | This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images. |
doi_str_mv | 10.1364/OL.37.004350 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283720327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283720327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMaOMDKTYvo4fYkLlKUXqArPlODdtUOKWOBn670nVwsp0daWjI32HkGtG5wykuF_mc1BzSgVk9IRMWQYmFcqIUzKlTMjUZIZPyEWMX5RSqQDOyYQDVSAyMyUPT9ij7-uwStZD60JMhrh_mqGtgwsek-iaGoPfJXVI-jV2rWuSunUrjJfkrHJNxKvjnZHPl-ePxVuaL1_fF4956oGLPq1KrXVphOG6Egy0UlgVjpfOG1WBNAKVMMJj4RQWkjHgjlclk1plTkpqYEZuD95tt_keMPa2raPHpnEBN0O0jGtQnAJX_6N7PRuXixG9O6C-28TYYWW33bir21lG7b6sXeYWlD2UHfGbo3koWiz_4N-U8AMNY3IE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113214594</pqid></control><display><type>article</type><title>Detecting humans using luminance saliency in thermal images</title><source>Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1</source><creator>Ko, ByoungChul ; Kim, DeokYeon ; Nam, JaeYeal</creator><creatorcontrib>Ko, ByoungChul ; Kim, DeokYeon ; Nam, JaeYeal</creatorcontrib><description>This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.37.004350</identifier><identifier>PMID: 23073459</identifier><language>eng</language><publisher>United States</publisher><subject>Classifiers ; Decision Trees ; Human ; Humans ; Legs ; Light ; Luminance ; Optical Phenomena ; Radio frequencies ; Thermography - methods ; Trunks</subject><ispartof>Optics letters, 2012-10, Vol.37 (20), p.4350-4352</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093</citedby><cites>FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23073459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, ByoungChul</creatorcontrib><creatorcontrib>Kim, DeokYeon</creatorcontrib><creatorcontrib>Nam, JaeYeal</creatorcontrib><title>Detecting humans using luminance saliency in thermal images</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images.</description><subject>Classifiers</subject><subject>Decision Trees</subject><subject>Human</subject><subject>Humans</subject><subject>Legs</subject><subject>Light</subject><subject>Luminance</subject><subject>Optical Phenomena</subject><subject>Radio frequencies</subject><subject>Thermography - methods</subject><subject>Trunks</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EoqWwMaOMDKTYvo4fYkLlKUXqArPlODdtUOKWOBn670nVwsp0daWjI32HkGtG5wykuF_mc1BzSgVk9IRMWQYmFcqIUzKlTMjUZIZPyEWMX5RSqQDOyYQDVSAyMyUPT9ij7-uwStZD60JMhrh_mqGtgwsek-iaGoPfJXVI-jV2rWuSunUrjJfkrHJNxKvjnZHPl-ePxVuaL1_fF4956oGLPq1KrXVphOG6Egy0UlgVjpfOG1WBNAKVMMJj4RQWkjHgjlclk1plTkpqYEZuD95tt_keMPa2raPHpnEBN0O0jGtQnAJX_6N7PRuXixG9O6C-28TYYWW33bir21lG7b6sXeYWlD2UHfGbo3koWiz_4N-U8AMNY3IE</recordid><startdate>20121015</startdate><enddate>20121015</enddate><creator>Ko, ByoungChul</creator><creator>Kim, DeokYeon</creator><creator>Nam, JaeYeal</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121015</creationdate><title>Detecting humans using luminance saliency in thermal images</title><author>Ko, ByoungChul ; Kim, DeokYeon ; Nam, JaeYeal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classifiers</topic><topic>Decision Trees</topic><topic>Human</topic><topic>Humans</topic><topic>Legs</topic><topic>Light</topic><topic>Luminance</topic><topic>Optical Phenomena</topic><topic>Radio frequencies</topic><topic>Thermography - methods</topic><topic>Trunks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, ByoungChul</creatorcontrib><creatorcontrib>Kim, DeokYeon</creatorcontrib><creatorcontrib>Nam, JaeYeal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, ByoungChul</au><au>Kim, DeokYeon</au><au>Nam, JaeYeal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting humans using luminance saliency in thermal images</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2012-10-15</date><risdate>2012</risdate><volume>37</volume><issue>20</issue><spage>4350</spage><epage>4352</epage><pages>4350-4352</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images.</abstract><cop>United States</cop><pmid>23073459</pmid><doi>10.1364/OL.37.004350</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2012-10, Vol.37 (20), p.4350-4352 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283720327 |
source | Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1 |
subjects | Classifiers Decision Trees Human Humans Legs Light Luminance Optical Phenomena Radio frequencies Thermography - methods Trunks |
title | Detecting humans using luminance saliency in thermal images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20humans%20using%20luminance%20saliency%20in%20thermal%20images&rft.jtitle=Optics%20letters&rft.au=Ko,%20ByoungChul&rft.date=2012-10-15&rft.volume=37&rft.issue=20&rft.spage=4350&rft.epage=4352&rft.pages=4350-4352&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.37.004350&rft_dat=%3Cproquest_cross%3E1283720327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-fd888d94928f413877efba2dac97f3694e7494ceba7eb61132a2fd16875a66093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113214594&rft_id=info:pmid/23073459&rfr_iscdi=true |