Loading…

Efficient Face Recognition System using Artificial Neural Network

Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face imag...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2012-01, Vol.41 (21), p.12-15
Main Authors: Daramola, S Adebayo, Odeghe, O Sandra
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15
container_issue 21
container_start_page 12
container_title International journal of computer applications
container_volume 41
creator Daramola, S Adebayo
Odeghe, O Sandra
description Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.
doi_str_mv 10.5120/5823-8042
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283720366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283720366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsNQe_AcBL3qIzu5kP3IspVWhKPhxXtJkt2xNsnU3QfrvTawHcQ7zDszDMDyEXFK45ZTBHVcMUwUZOyETyCVPlVLy9M98TmYx7mAozJnIswmZL611pTNtl6yK0iQvpvTb1nXOt8nrIXamSfro2m0yD50byaJOnkwffqL78uHjgpzZoo5m9ptT8r5avi0e0vXz_eNivk5LisBSUXIrrcI8pzIzosINgrCAFeND30DFBUWaiQI4DGvLQChq0cqKMsxygVNyfby7D_6zN7HTjYulqeuiNb6PmjKFkgGKEb36h-58H9rhu4FCBMmpyAbq5kiVwccYjNX74JoiHDQFPfrUo089-sRvmb5j8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1233075164</pqid></control><display><type>article</type><title>Efficient Face Recognition System using Artificial Neural Network</title><source>Freely Accessible Journals</source><creator>Daramola, S Adebayo ; Odeghe, O Sandra</creator><creatorcontrib>Daramola, S Adebayo ; Odeghe, O Sandra</creatorcontrib><description>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/5823-8042</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Artificial neural networks ; Back propagation ; Bands ; Construction ; Face recognition ; Illumination ; Neural networks</subject><ispartof>International journal of computer applications, 2012-01, Vol.41 (21), p.12-15</ispartof><rights>Copyright Foundation of Computer Science 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Daramola, S Adebayo</creatorcontrib><creatorcontrib>Odeghe, O Sandra</creatorcontrib><title>Efficient Face Recognition System using Artificial Neural Network</title><title>International journal of computer applications</title><description>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bands</subject><subject>Construction</subject><subject>Face recognition</subject><subject>Illumination</subject><subject>Neural networks</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsNQe_AcBL3qIzu5kP3IspVWhKPhxXtJkt2xNsnU3QfrvTawHcQ7zDszDMDyEXFK45ZTBHVcMUwUZOyETyCVPlVLy9M98TmYx7mAozJnIswmZL611pTNtl6yK0iQvpvTb1nXOt8nrIXamSfro2m0yD50byaJOnkwffqL78uHjgpzZoo5m9ptT8r5avi0e0vXz_eNivk5LisBSUXIrrcI8pzIzosINgrCAFeND30DFBUWaiQI4DGvLQChq0cqKMsxygVNyfby7D_6zN7HTjYulqeuiNb6PmjKFkgGKEb36h-58H9rhu4FCBMmpyAbq5kiVwccYjNX74JoiHDQFPfrUo089-sRvmb5j8A</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Daramola, S Adebayo</creator><creator>Odeghe, O Sandra</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>Efficient Face Recognition System using Artificial Neural Network</title><author>Daramola, S Adebayo ; Odeghe, O Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bands</topic><topic>Construction</topic><topic>Face recognition</topic><topic>Illumination</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Daramola, S Adebayo</creatorcontrib><creatorcontrib>Odeghe, O Sandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daramola, S Adebayo</au><au>Odeghe, O Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Face Recognition System using Artificial Neural Network</atitle><jtitle>International journal of computer applications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>41</volume><issue>21</issue><spage>12</spage><epage>15</epage><pages>12-15</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/5823-8042</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2012-01, Vol.41 (21), p.12-15
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1283720366
source Freely Accessible Journals
subjects Artificial neural networks
Back propagation
Bands
Construction
Face recognition
Illumination
Neural networks
title Efficient Face Recognition System using Artificial Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Face%20Recognition%20System%20using%20Artificial%20Neural%20Network&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Daramola,%20S%20Adebayo&rft.date=2012-01-01&rft.volume=41&rft.issue=21&rft.spage=12&rft.epage=15&rft.pages=12-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/5823-8042&rft_dat=%3Cproquest_cross%3E1283720366%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1233075164&rft_id=info:pmid/&rfr_iscdi=true