Loading…
Efficient Face Recognition System using Artificial Neural Network
Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face imag...
Saved in:
Published in: | International journal of computer applications 2012-01, Vol.41 (21), p.12-15 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 15 |
container_issue | 21 |
container_start_page | 12 |
container_title | International journal of computer applications |
container_volume | 41 |
creator | Daramola, S Adebayo Odeghe, O Sandra |
description | Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging. |
doi_str_mv | 10.5120/5823-8042 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283720366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283720366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsNQe_AcBL3qIzu5kP3IspVWhKPhxXtJkt2xNsnU3QfrvTawHcQ7zDszDMDyEXFK45ZTBHVcMUwUZOyETyCVPlVLy9M98TmYx7mAozJnIswmZL611pTNtl6yK0iQvpvTb1nXOt8nrIXamSfro2m0yD50byaJOnkwffqL78uHjgpzZoo5m9ptT8r5avi0e0vXz_eNivk5LisBSUXIrrcI8pzIzosINgrCAFeND30DFBUWaiQI4DGvLQChq0cqKMsxygVNyfby7D_6zN7HTjYulqeuiNb6PmjKFkgGKEb36h-58H9rhu4FCBMmpyAbq5kiVwccYjNX74JoiHDQFPfrUo089-sRvmb5j8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1233075164</pqid></control><display><type>article</type><title>Efficient Face Recognition System using Artificial Neural Network</title><source>Freely Accessible Journals</source><creator>Daramola, S Adebayo ; Odeghe, O Sandra</creator><creatorcontrib>Daramola, S Adebayo ; Odeghe, O Sandra</creatorcontrib><description>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/5823-8042</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Artificial neural networks ; Back propagation ; Bands ; Construction ; Face recognition ; Illumination ; Neural networks</subject><ispartof>International journal of computer applications, 2012-01, Vol.41 (21), p.12-15</ispartof><rights>Copyright Foundation of Computer Science 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Daramola, S Adebayo</creatorcontrib><creatorcontrib>Odeghe, O Sandra</creatorcontrib><title>Efficient Face Recognition System using Artificial Neural Network</title><title>International journal of computer applications</title><description>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bands</subject><subject>Construction</subject><subject>Face recognition</subject><subject>Illumination</subject><subject>Neural networks</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsNQe_AcBL3qIzu5kP3IspVWhKPhxXtJkt2xNsnU3QfrvTawHcQ7zDszDMDyEXFK45ZTBHVcMUwUZOyETyCVPlVLy9M98TmYx7mAozJnIswmZL611pTNtl6yK0iQvpvTb1nXOt8nrIXamSfro2m0yD50byaJOnkwffqL78uHjgpzZoo5m9ptT8r5avi0e0vXz_eNivk5LisBSUXIrrcI8pzIzosINgrCAFeND30DFBUWaiQI4DGvLQChq0cqKMsxygVNyfby7D_6zN7HTjYulqeuiNb6PmjKFkgGKEb36h-58H9rhu4FCBMmpyAbq5kiVwccYjNX74JoiHDQFPfrUo089-sRvmb5j8A</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Daramola, S Adebayo</creator><creator>Odeghe, O Sandra</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>Efficient Face Recognition System using Artificial Neural Network</title><author>Daramola, S Adebayo ; Odeghe, O Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bands</topic><topic>Construction</topic><topic>Face recognition</topic><topic>Illumination</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Daramola, S Adebayo</creatorcontrib><creatorcontrib>Odeghe, O Sandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daramola, S Adebayo</au><au>Odeghe, O Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Face Recognition System using Artificial Neural Network</atitle><jtitle>International journal of computer applications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>41</volume><issue>21</issue><spage>12</spage><epage>15</epage><pages>12-15</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Effective facial feature is needed to build a robust face recognition system capable of suppress the effect of illumination and pose variation. In this paper, a robust face recognition system is proposed. In the proposed system, two level haar wavelet transform is used to decompose frontal face image into seven sub-image bands. Thereafter eigenface feature is extracted from these bands. The feature is used as input to the classification algorithm based on Back Propagation Neural Network (BPNN). The proposed system has been tested using 150 frontal face samples with illumination and pose variation. The results obtained are very encouraging.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/5823-8042</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2012-01, Vol.41 (21), p.12-15 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283720366 |
source | Freely Accessible Journals |
subjects | Artificial neural networks Back propagation Bands Construction Face recognition Illumination Neural networks |
title | Efficient Face Recognition System using Artificial Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Face%20Recognition%20System%20using%20Artificial%20Neural%20Network&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Daramola,%20S%20Adebayo&rft.date=2012-01-01&rft.volume=41&rft.issue=21&rft.spage=12&rft.epage=15&rft.pages=12-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/5823-8042&rft_dat=%3Cproquest_cross%3E1283720366%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1302-6c5f7f8399174e6d3b306f03d25f03b0d5613146a050e6df20681f3f7d1234963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1233075164&rft_id=info:pmid/&rfr_iscdi=true |