Loading…

Dissipative binding of lattice bosons through distance-selective pair loss

We show that in a gas of ultracold atoms distance selective two-body loss can be engineered via the resonant laser excitation of atom pairs to interacting electronic states. In an optical lattice this leads to a dissipative master equation dynamics with Lindblad jump operators that annihilate atom p...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2012-12, Vol.109 (23), p.233003-233003, Article 233003
Main Authors: Ates, C, Olmos, B, Li, W, Lesanovsky, I
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that in a gas of ultracold atoms distance selective two-body loss can be engineered via the resonant laser excitation of atom pairs to interacting electronic states. In an optical lattice this leads to a dissipative master equation dynamics with Lindblad jump operators that annihilate atom pairs with a specific interparticle distance. In conjunction with coherent hopping between lattice sites this unusual dissipation mechanism leads to the formation of coherent long-lived complexes that can even exhibit an internal level structure which is strongly coupled to their external motion. We analyze this counterintuitive phenomenon in detail in a system of hard-core bosons. While current research has established that dissipation in general can lead to the emergence of coherent features in many-body systems our work shows that strong nonlocal dissipation can effectuate a binding mechanism for particles.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.109.233003