Loading…
Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser
We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled ^{87}Rb Raman laser. By combining measurements of the laser light field with nondemolition measurements of the atomic populations,...
Saved in:
Published in: | Physical review letters 2012-12, Vol.109 (25), p.253602-253602, Article 253602 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled ^{87}Rb Raman laser. By combining measurements of the laser light field with nondemolition measurements of the atomic populations, we infer the response of the gain medium represented by a collective atomic Bloch vector. The results are qualitatively explained with a simple model. Measurements and theory are extended to include the effect of intermediate repumping states on the closed-loop stability of the oscillator and the role of cavity feedback on stabilizing or enhancing relaxation oscillations. This experimental study of the stability of an optical laser operating deep into the bad-cavity regime will guide future development of superradiant lasers with ultranarrow linewidths. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.109.253602 |