Loading…
Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe...
Saved in:
Published in: | Physical review letters 2012-12, Vol.109 (26), p.267207-267207, Article 267207 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.109.267207 |