Loading…
UV photoactivation of 7-dehydrocholesterol on titanium implants enhances osteoblast differentiation and decreases Rankl gene expression
Vitamin D plays a central role in bone regeneration, and its insufficiency has been reported to have profound negative effects on implant osseointegration. The present study aimed to test the in vitro biological effect of titanium (Ti) implants coated with UV-activated 7-dehydrocholesterol (7-DHC),...
Saved in:
Published in: | Acta biomaterialia 2013-03, Vol.9 (3), p.5759-5770 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vitamin D plays a central role in bone regeneration, and its insufficiency has been reported to have profound negative effects on implant osseointegration. The present study aimed to test the in vitro biological effect of titanium (Ti) implants coated with UV-activated 7-dehydrocholesterol (7-DHC), the precursor of vitamin D, on cytotoxicity and osteoblast differentiation. Fourier transform infrared spectroscopy confirmed the changes in chemical structure of 7-DHC after UV exposure. High-pressure liquid chromatography analysis determined a 16.5±0.9% conversion of 7-DHC to previtamin D3 after 15min of UV exposure, and a 34.2±4.8% of the preD3 produced was finally converted to 25-hydroxyvitamin D3 (25-D3) by the osteoblastic cells. No cytotoxic effect was found for Ti implants treated with 7-DHC and UV-irradiated. Moreover, Ti implants treated with 7-DHC and UV-irradiated for 15min showed increased 25-D3 production, together with increased ALP activity and calcium content. Interestingly, Rankl gene expression was significantly reduced in osteoblasts cultured on 7-DHC-coated Ti surfaces when UV-irradiated for 15 and 30min to 33.56±15.28% and 28.21±4.40%, respectively, compared with the control. In conclusion, these findings demonstrate that UV-activated 7-DHC is a biocompatible coating of Ti implants, which allows the osteoblastic cells to produce themselves active vitamin D, with demonstrated positive effects on osteoblast differentiation in vitro. |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2012.11.021 |