Loading…
Derivation of a new banded waveguide model topology for sound synthesis
Banded waveguide (BWG) synthesis is an efficient method for real-time physical modeling of dispersive and multidimensional sounding objects, affording simulation of complex interactions, such as bowing. Current implementations, however, use nonphysical design parameters and produce a range of output...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2013-02, Vol.133 (2), p.EL76-EL81 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Banded waveguide (BWG) synthesis is an efficient method for real-time physical modeling of dispersive and multidimensional sounding objects, affording simulation of complex interactions, such as bowing. Current implementations, however, use nonphysical design parameters and produce a range of outputs that do not match equivalently designed modal and digital waveguide (DWG) models. This letter proposes a new topology for implementing BWG models without arbitrary parameters. The impulse response of the proposed model is identical to that of equivalent Karplus-Strong type and lumped modal models. Test of a nonlinear bi-directional bowed-string model demonstrates improved attack characteristics relative to prior BWG models. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.4773287 |