Loading…
Simple Strategy to Functionalize Polymeric Substrates via Surface-Initiated ATRP for Biomedical Applications
The functionalization of polymer surfaces via surface-initiated atom transfer radical polymerization (ATRP) is of crucial importance to prepare various functional materials. It is generally complicated to conduct ATRP on different organic material surfaces. In this work, a facile photoinduced one-st...
Saved in:
Published in: | Langmuir 2013-02, Vol.29 (5), p.1541-1550 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The functionalization of polymer surfaces via surface-initiated atom transfer radical polymerization (ATRP) is of crucial importance to prepare various functional materials. It is generally complicated to conduct ATRP on different organic material surfaces. In this work, a facile photoinduced one-step method was first developed for the covalent immobilization of ATRP initiators on the C–H group-containing substrates such as biaxially oriented polypropylene (BOPP). The C–H bonds of precise location of inert polymer surfaces were readily transferred to bromoalkyl initiator, followed by ATRP of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and glycidyl methacrylate (GMA), respectively, to produce the resultant patterned BOPP-g-P(DMAEMA) and BOPP-g-P(GMA) films. The epoxy groups of the P(GMA) microdomains can be aminated for covalently coupling IgG, while the P(DMAEMA) microdomains were used for immobilizing IgG via electronic interactions. The resultant IgG-coupled microdomains could interact with the corresponding target proteins, anti-IgG. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la302866n |