Loading…

Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral‐to‐matrix and carbonate‐to‐phosphate and more variable crystallinity in treatment‐naive fracture cases compared with fracture‐free controls

After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bone and mineral research 2013-01, Vol.28 (1), p.150-161
Main Authors: Gourion‐Arsiquaud, Samuel, Lukashova, Lyudmilla, Power, Jon, Loveridge, Nigel, Reeve, Jonathan, Boskey, Adele L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age‐matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro‐computed tomography. Although 3‐dimensional micro‐CT bone mineral densities were similar, the mineral‐to‐matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral‐to‐matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate‐to‐phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate‐to‐phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment‐naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. © 2013 American Society for Bone and Mineral Research
ISSN:0884-0431
1523-4681
1523-4681
DOI:10.1002/jbmr.1724