Loading…
Photodynamic Inactivation of Planktonic Cultures and Biofilms of Candida albicans Mediated by Aluminum-Chloride-Phthalocyanine Entrapped in Nanoemulsions
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum‐chloride‐phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate...
Saved in:
Published in: | Photochemistry and photobiology 2013-01, Vol.89 (1), p.111-119 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum‐chloride‐phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm−2. Cationic NE‐ClAlPc reduced significantly both colony counts and cell metabolism (P |
---|---|
ISSN: | 0031-8655 1751-1097 |
DOI: | 10.1111/j.1751-1097.2012.01198.x |