Loading…

Photodynamic Inactivation of Planktonic Cultures and Biofilms of Candida albicans Mediated by Aluminum-Chloride-Phthalocyanine Entrapped in Nanoemulsions

New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum‐chloride‐phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate...

Full description

Saved in:
Bibliographic Details
Published in:Photochemistry and photobiology 2013-01, Vol.89 (1), p.111-119
Main Authors: Ribeiro, Ana Paula Dias, Andrade, Mariana Carvalho, de Fátima da Silva, Julhiany, Jorge, Janaina Habib, Primo, Fernando Lucas, Tedesco, Antonio Cláudio, Pavarina, Ana Cláudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum‐chloride‐phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm−2. Cationic NE‐ClAlPc reduced significantly both colony counts and cell metabolism (P 
ISSN:0031-8655
1751-1097
DOI:10.1111/j.1751-1097.2012.01198.x