Loading…
Adverse cardiac remodeling due to maternal low protein diet is associated with alterations in expression of genes regulating glucose metabolism
Abstract Background and aims We have previously shown that a maternal low protein (LP) diet during pregnancy in the rat results in adverse ventricular remodeling and contractile deficiencies of the neonatal rat heart. Since pathological cardiac hypertrophy is associated with increased expression of...
Saved in:
Published in: | Nutrition, metabolism, and cardiovascular diseases metabolism, and cardiovascular diseases, 2013-02, Vol.23 (2), p.130-135 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Background and aims We have previously shown that a maternal low protein (LP) diet during pregnancy in the rat results in adverse ventricular remodeling and contractile deficiencies of the neonatal rat heart. Since pathological cardiac hypertrophy is associated with increased expression of genes involved in glucose handling, this study was undertaken to examine if maternal LP diet alters the expression of genes encoding for some key components of glucose metabolism and uptake, and of the insulin receptor (IR) signal transduction in the heart of male offspring. Methods and results We determined the effect of maternal LP and normal diet (90 and 180 g/casein/kg respectively) on IR β-subunit, insulin receptor substrate (IRS)-1, phosphotyrosyl protein phosphatase (PTP) 1B, GLUT4 and phosphatidylinositol (PI) 3-kinase in male rat offspring at 24 h and at 1, 4 and 8 wks post-partum. Quantitative real-time RT-PCR revealed significant age-dependent increases in the expression of IR β-subunit, IRS-1, PTP1B, GLUT4 and PI3-kinase in the LP group with concomitant increases in corresponding protein abundance at 4 wks of age. These changes were associated with increases in left ventricular (LV) internal diameters as well as increases in LV wall thickness. Conclusion A maternal LP diet can induce increases in the gene expression and protein levels of key components of glucose metabolism and the IR signal transduction pathway in the neonatal rat heart, which may be related to accelerated energy supply, demand and utilization for ventricular remodeling due to compromised contractile performance during early life. |
---|---|
ISSN: | 0939-4753 1590-3729 |
DOI: | 10.1016/j.numecd.2011.03.010 |