Loading…
Filling the gaps – The generation of full genomic sequences for 15 common and well-documented HLA class I alleles using next-generation sequencing technology
Abstract Many common and well-documented (CWD) HLA alleles have only been partially characterized. The DNA sequence of these incomplete alleles, as published in the IMGT/HLA database, is most often limited to exons that code for the extracellular domains of the mature protein. Here we describe the a...
Saved in:
Published in: | Human immunology 2013-03, Vol.74 (3), p.325-329 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Many common and well-documented (CWD) HLA alleles have only been partially characterized. The DNA sequence of these incomplete alleles, as published in the IMGT/HLA database, is most often limited to exons that code for the extracellular domains of the mature protein. Here we describe the application of next-generation sequencing technology to obtain full length genomic sequence from a single long-range PCR amplicon for 15 common and well-documented HLA Class I alleles. This technology is well suited to fill in the gaps of the current HLA allele sequence database which is largely incomplete. A more comprehensive catalog of HLA allele sequences would be beneficial in the evaluation of mismatches in transplantation, studies of population genetics, the evolution of HLAs, regulatory mechanisms and HLA expression, and issues related to the genomic organization of the MHC. |
---|---|
ISSN: | 0198-8859 1879-1166 |
DOI: | 10.1016/j.humimm.2012.12.007 |