Loading…

Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach

Accurate estimation of wind speed is essential for many hydrological applications. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5 mesoscale model. However, there is a problem in using wind speed data in hydrological processes due to large errors obtained from the mesosc...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2013, Vol.27 (1), p.1-23
Main Authors: Ishak, Asnor Muizan, Remesan, Renji, Srivastava, Prashant K., Islam, Tanvir, Han, Dawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3
cites cdi_FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3
container_end_page 23
container_issue 1
container_start_page 1
container_title Water resources management
container_volume 27
creator Ishak, Asnor Muizan
Remesan, Renji
Srivastava, Prashant K.
Islam, Tanvir
Han, Dawei
description Accurate estimation of wind speed is essential for many hydrological applications. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5 mesoscale model. However, there is a problem in using wind speed data in hydrological processes due to large errors obtained from the mesoscale model MM5. The theme of this article has been focused on hybridization of MM5 with four mathematical models (two regression models- the multiple linear regression (MLR) and the nonlinear regression (NLR), and two artificial intelligence models – the artificial neural network (ANN) and the support vector machines (SVMs)) in such a way so that the properly modelled schemes reduce the wind speed errors with the information from other MM5 derived hydro-meteorological parameters. The forward selection method was employed as an input variable selection procedure to examine the model generalization errors. The input variables of this statistical analysis include wind speed, temperature, relative humidity, pressure, solar radiation and rainfall from the MM5. The proposed conjunction structure was calibrated and validated at the Brue catchment, Southwest of England. The study results show that relatively simple models like MLR are useful tools for positively altering the wind speed time series obtaining from the MM5 model. The SVM based hybrid scheme could make a better robust modelling framework capable of capturing the non-linear nature than that of the ANN based scheme. Although the proposed hybrid schemes are applied on error correction modelling in this study, there are further scopes for application in a wide range of areas in conjunction with any higher end models.
doi_str_mv 10.1007/s11269-012-0130-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291610033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291610033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3</originalsourceid><addsrcrecordid>eNp1kUFrGzEQhUVoIW6aH5CboBR62VQj7Wqr3oxx44BNAknIUWglrb1hvXJHNiX_PmPWlFLIQQhG33szmsfYFYhrEKL-ngGkNoUASUeJAs7YBKpaFaAr8YFNhJGiKOsSztmnnF-EIJURE_ZnjpiQzxJi9PsuDXyVQuz7bljz1PLnbgj8YRdj4I8bTIf1hi9eA6ZiFfcxYerTuvOu5_cO3ZZKmLkjxSrmlKkeR7effEqyBrvAp7sdJuc3n9nH1vU5Xp7uC_b0a_44WxTLu5vb2XRZeFWbfWGiaxsFoRRQyR_Old6oWlVaVkEGgMorMNBoaXzpZRucr7wGp1vVtKVshFcX7NvoS21_H2Le222XPX3QDTEdsgVpQNMulCL0y3_oSzrgQNMRpbVWphaaKBgpjylnjK3dYbd1-GpB2GMUdozCUhT2GIUF0nw9ObvjVlp0g-_yX6GsNRglKuLkyGV6GtYR_5ngXfM3KBWYNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266639706</pqid></control><display><type>article</type><title>Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Ishak, Asnor Muizan ; Remesan, Renji ; Srivastava, Prashant K. ; Islam, Tanvir ; Han, Dawei</creator><creatorcontrib>Ishak, Asnor Muizan ; Remesan, Renji ; Srivastava, Prashant K. ; Islam, Tanvir ; Han, Dawei</creatorcontrib><description>Accurate estimation of wind speed is essential for many hydrological applications. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5 mesoscale model. However, there is a problem in using wind speed data in hydrological processes due to large errors obtained from the mesoscale model MM5. The theme of this article has been focused on hybridization of MM5 with four mathematical models (two regression models- the multiple linear regression (MLR) and the nonlinear regression (NLR), and two artificial intelligence models – the artificial neural network (ANN) and the support vector machines (SVMs)) in such a way so that the properly modelled schemes reduce the wind speed errors with the information from other MM5 derived hydro-meteorological parameters. The forward selection method was employed as an input variable selection procedure to examine the model generalization errors. The input variables of this statistical analysis include wind speed, temperature, relative humidity, pressure, solar radiation and rainfall from the MM5. The proposed conjunction structure was calibrated and validated at the Brue catchment, Southwest of England. The study results show that relatively simple models like MLR are useful tools for positively altering the wind speed time series obtaining from the MM5 model. The SVM based hybrid scheme could make a better robust modelling framework capable of capturing the non-linear nature than that of the ANN based scheme. Although the proposed hybrid schemes are applied on error correction modelling in this study, there are further scopes for application in a wide range of areas in conjunction with any higher end models.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-012-0130-1</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial intelligence ; Atmospheric Sciences ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environment ; Error correction &amp; detection ; Exact sciences and technology ; Feature selection ; Geotechnical Engineering &amp; Applied Earth Sciences ; Humidity ; Hydrogeology ; Hydrologic data ; Hydrology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Learning theory ; Mathematical analysis ; Mathematical models ; Meteorology ; Modelling ; Neural networks ; Power ; Radiation ; Rain ; Regression ; Regression analysis ; Relative humidity ; Solar radiation ; Statistical analysis ; Studies ; Support vector machines ; Variables ; Velocity ; Water resources management ; Weather forecasting ; Wind speed</subject><ispartof>Water resources management, 2013, Vol.27 (1), p.1-23</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3</citedby><cites>FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1266639706/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1266639706?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,27923,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27619305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishak, Asnor Muizan</creatorcontrib><creatorcontrib>Remesan, Renji</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Han, Dawei</creatorcontrib><title>Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Accurate estimation of wind speed is essential for many hydrological applications. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5 mesoscale model. However, there is a problem in using wind speed data in hydrological processes due to large errors obtained from the mesoscale model MM5. The theme of this article has been focused on hybridization of MM5 with four mathematical models (two regression models- the multiple linear regression (MLR) and the nonlinear regression (NLR), and two artificial intelligence models – the artificial neural network (ANN) and the support vector machines (SVMs)) in such a way so that the properly modelled schemes reduce the wind speed errors with the information from other MM5 derived hydro-meteorological parameters. The forward selection method was employed as an input variable selection procedure to examine the model generalization errors. The input variables of this statistical analysis include wind speed, temperature, relative humidity, pressure, solar radiation and rainfall from the MM5. The proposed conjunction structure was calibrated and validated at the Brue catchment, Southwest of England. The study results show that relatively simple models like MLR are useful tools for positively altering the wind speed time series obtaining from the MM5 model. The SVM based hybrid scheme could make a better robust modelling framework capable of capturing the non-linear nature than that of the ANN based scheme. Although the proposed hybrid schemes are applied on error correction modelling in this study, there are further scopes for application in a wide range of areas in conjunction with any higher end models.</description><subject>Artificial intelligence</subject><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environment</subject><subject>Error correction &amp; detection</subject><subject>Exact sciences and technology</subject><subject>Feature selection</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Humidity</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Power</subject><subject>Radiation</subject><subject>Rain</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Relative humidity</subject><subject>Solar radiation</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Variables</subject><subject>Velocity</subject><subject>Water resources management</subject><subject>Weather forecasting</subject><subject>Wind speed</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kUFrGzEQhUVoIW6aH5CboBR62VQj7Wqr3oxx44BNAknIUWglrb1hvXJHNiX_PmPWlFLIQQhG33szmsfYFYhrEKL-ngGkNoUASUeJAs7YBKpaFaAr8YFNhJGiKOsSztmnnF-EIJURE_ZnjpiQzxJi9PsuDXyVQuz7bljz1PLnbgj8YRdj4I8bTIf1hi9eA6ZiFfcxYerTuvOu5_cO3ZZKmLkjxSrmlKkeR7effEqyBrvAp7sdJuc3n9nH1vU5Xp7uC_b0a_44WxTLu5vb2XRZeFWbfWGiaxsFoRRQyR_Old6oWlVaVkEGgMorMNBoaXzpZRucr7wGp1vVtKVshFcX7NvoS21_H2Le222XPX3QDTEdsgVpQNMulCL0y3_oSzrgQNMRpbVWphaaKBgpjylnjK3dYbd1-GpB2GMUdozCUhT2GIUF0nw9ObvjVlp0g-_yX6GsNRglKuLkyGV6GtYR_5ngXfM3KBWYNw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Ishak, Asnor Muizan</creator><creator>Remesan, Renji</creator><creator>Srivastava, Prashant K.</creator><creator>Islam, Tanvir</creator><creator>Han, Dawei</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>2013</creationdate><title>Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach</title><author>Ishak, Asnor Muizan ; Remesan, Renji ; Srivastava, Prashant K. ; Islam, Tanvir ; Han, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial intelligence</topic><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environment</topic><topic>Error correction &amp; detection</topic><topic>Exact sciences and technology</topic><topic>Feature selection</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Humidity</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Power</topic><topic>Radiation</topic><topic>Rain</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Relative humidity</topic><topic>Solar radiation</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Variables</topic><topic>Velocity</topic><topic>Water resources management</topic><topic>Weather forecasting</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishak, Asnor Muizan</creatorcontrib><creatorcontrib>Remesan, Renji</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Han, Dawei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishak, Asnor Muizan</au><au>Remesan, Renji</au><au>Srivastava, Prashant K.</au><au>Islam, Tanvir</au><au>Han, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2013</date><risdate>2013</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>Accurate estimation of wind speed is essential for many hydrological applications. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5 mesoscale model. However, there is a problem in using wind speed data in hydrological processes due to large errors obtained from the mesoscale model MM5. The theme of this article has been focused on hybridization of MM5 with four mathematical models (two regression models- the multiple linear regression (MLR) and the nonlinear regression (NLR), and two artificial intelligence models – the artificial neural network (ANN) and the support vector machines (SVMs)) in such a way so that the properly modelled schemes reduce the wind speed errors with the information from other MM5 derived hydro-meteorological parameters. The forward selection method was employed as an input variable selection procedure to examine the model generalization errors. The input variables of this statistical analysis include wind speed, temperature, relative humidity, pressure, solar radiation and rainfall from the MM5. The proposed conjunction structure was calibrated and validated at the Brue catchment, Southwest of England. The study results show that relatively simple models like MLR are useful tools for positively altering the wind speed time series obtaining from the MM5 model. The SVM based hybrid scheme could make a better robust modelling framework capable of capturing the non-linear nature than that of the ANN based scheme. Although the proposed hybrid schemes are applied on error correction modelling in this study, there are further scopes for application in a wide range of areas in conjunction with any higher end models.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-012-0130-1</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2013, Vol.27 (1), p.1-23
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_1291610033
source ABI/INFORM Global (ProQuest); Springer Link
subjects Artificial intelligence
Atmospheric Sciences
Civil Engineering
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Environment
Error correction & detection
Exact sciences and technology
Feature selection
Geotechnical Engineering & Applied Earth Sciences
Humidity
Hydrogeology
Hydrologic data
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
Learning theory
Mathematical analysis
Mathematical models
Meteorology
Modelling
Neural networks
Power
Radiation
Rain
Regression
Regression analysis
Relative humidity
Solar radiation
Statistical analysis
Studies
Support vector machines
Variables
Velocity
Water resources management
Weather forecasting
Wind speed
title Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Correction%20Modelling%20of%20Wind%20Speed%20Through%20Hydro-Meteorological%20Parameters%20and%20Mesoscale%20Model:%20A%20Hybrid%20Approach&rft.jtitle=Water%20resources%20management&rft.au=Ishak,%20Asnor%20Muizan&rft.date=2013&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-012-0130-1&rft_dat=%3Cproquest_cross%3E1291610033%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-9eafb31d401528aa4c93735625d2d115c3191b629c4c2fdac5c61a6f3bf42b0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266639706&rft_id=info:pmid/&rfr_iscdi=true