Loading…

Matrix type alters structure of aquatic vertebrate assemblages in cypress domes

Management of communities in fragmented systems requires application of models for predicting and understanding patterns of diversity at relevant scales. Metacommunity models may help explain patterns of beta-diversity, but more empirical investigations are needed to determine the generality of thes...

Full description

Saved in:
Bibliographic Details
Published in:Biodiversity and conservation 2013-02, Vol.22 (2), p.497-511
Main Authors: Nowakowski, A. Justin, Hyslop, Natalie L., Watling, James I., Donnelly, Maureen A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Management of communities in fragmented systems requires application of models for predicting and understanding patterns of diversity at relevant scales. Metacommunity models may help explain patterns of beta-diversity, but more empirical investigations are needed to determine the generality of these models and the importance of matrix identity as a mediator of metacommunity processes. We studied patterns of beta diversity among cypress domes in a landscape composed of two different matrix types within Big Cypress National Preserve to determine whether community composition differed by matrix type and to evaluate predictions of metacommunity models. We sampled fully-aquatic vertebrates in 16 cypress domes. A causal modeling framework was used to assess the relative importance of space and environmental variables measured in the domes and in the nearby matrix in explaining variation in community similarities. Our results show that community composition was influenced by matrix type, which violates the common metacommunity assumption that matrix identity has negligible effect on patch patterns. We found different drivers of beta-diversity patterns between matrix types; similarities among dome communities within cypress-prairie matrix were influenced by local environmental conditions and matrix characteristics, while communities in pine-rockland domes were most influenced by conditions in the matrix. Our results have implications for use of metacommunity models in conservation planning and we suggest that future research should focus on the importance of matrix identity and complexity in mediating community patterns in patchy landscapes.
ISSN:0960-3115
1572-9710
DOI:10.1007/s10531-012-0425-9