Loading…

low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)

A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was pu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2013-02, Vol.40 (2), p.217-226
Main Authors: Yang, Shaoqing, Xu, Haibo, Yan, Qiaojuan, Liu, Yu, Zhou, Peng, Jiang, Zhengqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543
cites cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543
container_end_page 226
container_issue 2
container_start_page 217
container_title Journal of industrial microbiology & biotechnology
container_volume 40
creator Yang, Shaoqing
Xu, Haibo
Yan, Qiaojuan
Liu, Yu
Zhou, Peng
Jiang, Zhengqiang
description A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.
doi_str_mv 10.1007/s10295-012-1222-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291618575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1007/s10295-012-1222-x</oup_id><sourcerecordid>2871332591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbK3-AG80UIQKruZjs9lcSrG1UPDCFi9DTnbSpmQ3x2RXe_z1zmGPWoSKVzMwz8y8wztV9ZzRt4xS9a4wyrWsKeM145zXtw-qfdaotpZSyIeYi1bVshFyr3pSyg2lVCrFH1d7XHDFGtruV19i-k6GFMHN0WYy2FKIm6cw2gIkeXJxHSDab8GSCXKGMuVQCHgfXIBxihtyvelzipsfUMga4xEikMvrp9Ujb2OBZ7t4UF2efLg4_liffzo9O35_Xjup9VRrpVvooO8YbbnX1CttVde7VtGV7n0rRYf3cLYSIHwnwIsVb5z2YDkW8bSD6miZu87p64zLzRCKgxjtCGkuhnHNWtZJJf8DVULRRjGB6OFf6E2a84iHbCnWoVyxpdhCuZxKyeDNOofB5o1h1GwNMotBBg0yW4PMLfa82E2eVwP0vzt-OYLAqx1gi7PRZzu6UP5wSupGdQw5vnAFS-MV5DsS_7H9zdKU5vU9Yu98E-IvF9zbZOwVWm8uP3OKOvGTeCOZ-Am7tL31</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271881033</pqid></control><display><type>article</type><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><source>Oxford Journals Open Access Collection</source><source>ABI/INFORM Global</source><creator>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</creator><creatorcontrib>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</creatorcontrib><description>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-012-1222-x</identifier><identifier>PMID: 23271406</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>acetates ; acetone ; Biochemistry ; Biodegradable materials ; Bioenergy/Biofuels/Biochemicals ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Carbon ; Carbon sources ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - isolation &amp; purification ; Carboxylic Ester Hydrolases - metabolism ; cutin ; cutinase ; dimethyl sulfoxide ; Enzyme Stability ; Enzymes ; Esters ; Ethanol ; Fermentation ; filtration ; Fundamental and applied biological sciences. Psychology ; Fungi ; Genetic Engineering ; hexanoic acid ; Hydrogen-Ion Concentration ; Hydrolysis ; industrial applications ; Inorganic Chemistry ; isopropyl alcohol ; Kinetics ; Life Sciences ; methanol ; Microbiology ; Molecular Weight ; Plastics ; polyacrylamide gel electrophoresis ; Polyesters - chemistry ; Polyesters - metabolism ; polyethylene ; Polyethylene terephthalate ; Polymers ; Proteins ; solvents ; Solvents - chemistry ; Sordariales - enzymology ; Studies ; Substrate Specificity ; succinic acid ; Temperature ; thermophilic fungi ; Thielavia ; Triticum aestivum ; Wheat bran</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2013-02, Vol.40 (2), p.217-226</ispartof><rights>Society for Industrial Microbiology 2013 2013</rights><rights>Society for Industrial Microbiology and Biotechnology 2012</rights><rights>2014 INIST-CNRS</rights><rights>Society for Industrial Microbiology and Biotechnology 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</citedby><cites>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1271881033/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1271881033?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11666,27900,27901,36036,36037,44338,74864</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27594781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23271406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shaoqing</creatorcontrib><creatorcontrib>Xu, Haibo</creatorcontrib><creatorcontrib>Yan, Qiaojuan</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Jiang, Zhengqiang</creatorcontrib><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</description><subject>acetates</subject><subject>acetone</subject><subject>Biochemistry</subject><subject>Biodegradable materials</subject><subject>Bioenergy/Biofuels/Biochemicals</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - isolation &amp; purification</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>cutin</subject><subject>cutinase</subject><subject>dimethyl sulfoxide</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>filtration</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Genetic Engineering</subject><subject>hexanoic acid</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>industrial applications</subject><subject>Inorganic Chemistry</subject><subject>isopropyl alcohol</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>methanol</subject><subject>Microbiology</subject><subject>Molecular Weight</subject><subject>Plastics</subject><subject>polyacrylamide gel electrophoresis</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - metabolism</subject><subject>polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Proteins</subject><subject>solvents</subject><subject>Solvents - chemistry</subject><subject>Sordariales - enzymology</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>succinic acid</subject><subject>Temperature</subject><subject>thermophilic fungi</subject><subject>Thielavia</subject><subject>Triticum aestivum</subject><subject>Wheat bran</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1rFTEQhhdRbK3-AG80UIQKruZjs9lcSrG1UPDCFi9DTnbSpmQ3x2RXe_z1zmGPWoSKVzMwz8y8wztV9ZzRt4xS9a4wyrWsKeM145zXtw-qfdaotpZSyIeYi1bVshFyr3pSyg2lVCrFH1d7XHDFGtruV19i-k6GFMHN0WYy2FKIm6cw2gIkeXJxHSDab8GSCXKGMuVQCHgfXIBxihtyvelzipsfUMga4xEikMvrp9Ujb2OBZ7t4UF2efLg4_liffzo9O35_Xjup9VRrpVvooO8YbbnX1CttVde7VtGV7n0rRYf3cLYSIHwnwIsVb5z2YDkW8bSD6miZu87p64zLzRCKgxjtCGkuhnHNWtZJJf8DVULRRjGB6OFf6E2a84iHbCnWoVyxpdhCuZxKyeDNOofB5o1h1GwNMotBBg0yW4PMLfa82E2eVwP0vzt-OYLAqx1gi7PRZzu6UP5wSupGdQw5vnAFS-MV5DsS_7H9zdKU5vU9Yu98E-IvF9zbZOwVWm8uP3OKOvGTeCOZ-Am7tL31</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yang, Shaoqing</creator><creator>Xu, Haibo</creator><creator>Yan, Qiaojuan</creator><creator>Liu, Yu</creator><creator>Zhou, Peng</creator><creator>Jiang, Zhengqiang</creator><general>Springer-Verlag</general><general>Oxford University Press</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130201</creationdate><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><author>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acetates</topic><topic>acetone</topic><topic>Biochemistry</topic><topic>Biodegradable materials</topic><topic>Bioenergy/Biofuels/Biochemicals</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - isolation &amp; purification</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>cutin</topic><topic>cutinase</topic><topic>dimethyl sulfoxide</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>filtration</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Genetic Engineering</topic><topic>hexanoic acid</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>industrial applications</topic><topic>Inorganic Chemistry</topic><topic>isopropyl alcohol</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>methanol</topic><topic>Microbiology</topic><topic>Molecular Weight</topic><topic>Plastics</topic><topic>polyacrylamide gel electrophoresis</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - metabolism</topic><topic>polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Proteins</topic><topic>solvents</topic><topic>Solvents - chemistry</topic><topic>Sordariales - enzymology</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>succinic acid</topic><topic>Temperature</topic><topic>thermophilic fungi</topic><topic>Thielavia</topic><topic>Triticum aestivum</topic><topic>Wheat bran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shaoqing</creatorcontrib><creatorcontrib>Xu, Haibo</creatorcontrib><creatorcontrib>Yan, Qiaojuan</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Jiang, Zhengqiang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shaoqing</au><au>Xu, Haibo</au><au>Yan, Qiaojuan</au><au>Liu, Yu</au><au>Zhou, Peng</au><au>Jiang, Zhengqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>217</spage><epage>226</epage><pages>217-226</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23271406</pmid><doi>10.1007/s10295-012-1222-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2013-02, Vol.40 (2), p.217-226
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1291618575
source Oxford Journals Open Access Collection; ABI/INFORM Global
subjects acetates
acetone
Biochemistry
Biodegradable materials
Bioenergy/Biofuels/Biochemicals
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
Carbon
Carbon sources
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - isolation & purification
Carboxylic Ester Hydrolases - metabolism
cutin
cutinase
dimethyl sulfoxide
Enzyme Stability
Enzymes
Esters
Ethanol
Fermentation
filtration
Fundamental and applied biological sciences. Psychology
Fungi
Genetic Engineering
hexanoic acid
Hydrogen-Ion Concentration
Hydrolysis
industrial applications
Inorganic Chemistry
isopropyl alcohol
Kinetics
Life Sciences
methanol
Microbiology
Molecular Weight
Plastics
polyacrylamide gel electrophoresis
Polyesters - chemistry
Polyesters - metabolism
polyethylene
Polyethylene terephthalate
Polymers
Proteins
solvents
Solvents - chemistry
Sordariales - enzymology
Studies
Substrate Specificity
succinic acid
Temperature
thermophilic fungi
Thielavia
Triticum aestivum
Wheat bran
title low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=low%20molecular%20mass%20cutinase%20of%20Thielavia%20terrestris%20efficiently%20hydrolyzes%20poly(esters)&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Yang,%20Shaoqing&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=217&rft.epage=226&rft.pages=217-226&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-012-1222-x&rft_dat=%3Cproquest_cross%3E2871332591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271881033&rft_id=info:pmid/23271406&rft_oup_id=10.1007/s10295-012-1222-x&rfr_iscdi=true