Loading…
low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)
A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was pu...
Saved in:
Published in: | Journal of industrial microbiology & biotechnology 2013-02, Vol.40 (2), p.217-226 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543 |
---|---|
cites | cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543 |
container_end_page | 226 |
container_issue | 2 |
container_start_page | 217 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 40 |
creator | Yang, Shaoqing Xu, Haibo Yan, Qiaojuan Liu, Yu Zhou, Peng Jiang, Zhengqiang |
description | A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future. |
doi_str_mv | 10.1007/s10295-012-1222-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291618575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1007/s10295-012-1222-x</oup_id><sourcerecordid>2871332591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbK3-AG80UIQKruZjs9lcSrG1UPDCFi9DTnbSpmQ3x2RXe_z1zmGPWoSKVzMwz8y8wztV9ZzRt4xS9a4wyrWsKeM145zXtw-qfdaotpZSyIeYi1bVshFyr3pSyg2lVCrFH1d7XHDFGtruV19i-k6GFMHN0WYy2FKIm6cw2gIkeXJxHSDab8GSCXKGMuVQCHgfXIBxihtyvelzipsfUMga4xEikMvrp9Ujb2OBZ7t4UF2efLg4_liffzo9O35_Xjup9VRrpVvooO8YbbnX1CttVde7VtGV7n0rRYf3cLYSIHwnwIsVb5z2YDkW8bSD6miZu87p64zLzRCKgxjtCGkuhnHNWtZJJf8DVULRRjGB6OFf6E2a84iHbCnWoVyxpdhCuZxKyeDNOofB5o1h1GwNMotBBg0yW4PMLfa82E2eVwP0vzt-OYLAqx1gi7PRZzu6UP5wSupGdQw5vnAFS-MV5DsS_7H9zdKU5vU9Yu98E-IvF9zbZOwVWm8uP3OKOvGTeCOZ-Am7tL31</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271881033</pqid></control><display><type>article</type><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><source>Oxford Journals Open Access Collection</source><source>ABI/INFORM Global</source><creator>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</creator><creatorcontrib>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</creatorcontrib><description>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-012-1222-x</identifier><identifier>PMID: 23271406</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>acetates ; acetone ; Biochemistry ; Biodegradable materials ; Bioenergy/Biofuels/Biochemicals ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Carbon ; Carbon sources ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - isolation & purification ; Carboxylic Ester Hydrolases - metabolism ; cutin ; cutinase ; dimethyl sulfoxide ; Enzyme Stability ; Enzymes ; Esters ; Ethanol ; Fermentation ; filtration ; Fundamental and applied biological sciences. Psychology ; Fungi ; Genetic Engineering ; hexanoic acid ; Hydrogen-Ion Concentration ; Hydrolysis ; industrial applications ; Inorganic Chemistry ; isopropyl alcohol ; Kinetics ; Life Sciences ; methanol ; Microbiology ; Molecular Weight ; Plastics ; polyacrylamide gel electrophoresis ; Polyesters - chemistry ; Polyesters - metabolism ; polyethylene ; Polyethylene terephthalate ; Polymers ; Proteins ; solvents ; Solvents - chemistry ; Sordariales - enzymology ; Studies ; Substrate Specificity ; succinic acid ; Temperature ; thermophilic fungi ; Thielavia ; Triticum aestivum ; Wheat bran</subject><ispartof>Journal of industrial microbiology & biotechnology, 2013-02, Vol.40 (2), p.217-226</ispartof><rights>Society for Industrial Microbiology 2013 2013</rights><rights>Society for Industrial Microbiology and Biotechnology 2012</rights><rights>2014 INIST-CNRS</rights><rights>Society for Industrial Microbiology and Biotechnology 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</citedby><cites>FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1271881033/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1271881033?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11666,27900,27901,36036,36037,44338,74864</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27594781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23271406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shaoqing</creatorcontrib><creatorcontrib>Xu, Haibo</creatorcontrib><creatorcontrib>Yan, Qiaojuan</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Jiang, Zhengqiang</creatorcontrib><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</description><subject>acetates</subject><subject>acetone</subject><subject>Biochemistry</subject><subject>Biodegradable materials</subject><subject>Bioenergy/Biofuels/Biochemicals</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - isolation & purification</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>cutin</subject><subject>cutinase</subject><subject>dimethyl sulfoxide</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>filtration</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Genetic Engineering</subject><subject>hexanoic acid</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>industrial applications</subject><subject>Inorganic Chemistry</subject><subject>isopropyl alcohol</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>methanol</subject><subject>Microbiology</subject><subject>Molecular Weight</subject><subject>Plastics</subject><subject>polyacrylamide gel electrophoresis</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - metabolism</subject><subject>polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Proteins</subject><subject>solvents</subject><subject>Solvents - chemistry</subject><subject>Sordariales - enzymology</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>succinic acid</subject><subject>Temperature</subject><subject>thermophilic fungi</subject><subject>Thielavia</subject><subject>Triticum aestivum</subject><subject>Wheat bran</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1rFTEQhhdRbK3-AG80UIQKruZjs9lcSrG1UPDCFi9DTnbSpmQ3x2RXe_z1zmGPWoSKVzMwz8y8wztV9ZzRt4xS9a4wyrWsKeM145zXtw-qfdaotpZSyIeYi1bVshFyr3pSyg2lVCrFH1d7XHDFGtruV19i-k6GFMHN0WYy2FKIm6cw2gIkeXJxHSDab8GSCXKGMuVQCHgfXIBxihtyvelzipsfUMga4xEikMvrp9Ujb2OBZ7t4UF2efLg4_liffzo9O35_Xjup9VRrpVvooO8YbbnX1CttVde7VtGV7n0rRYf3cLYSIHwnwIsVb5z2YDkW8bSD6miZu87p64zLzRCKgxjtCGkuhnHNWtZJJf8DVULRRjGB6OFf6E2a84iHbCnWoVyxpdhCuZxKyeDNOofB5o1h1GwNMotBBg0yW4PMLfa82E2eVwP0vzt-OYLAqx1gi7PRZzu6UP5wSupGdQw5vnAFS-MV5DsS_7H9zdKU5vU9Yu98E-IvF9zbZOwVWm8uP3OKOvGTeCOZ-Am7tL31</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yang, Shaoqing</creator><creator>Xu, Haibo</creator><creator>Yan, Qiaojuan</creator><creator>Liu, Yu</creator><creator>Zhou, Peng</creator><creator>Jiang, Zhengqiang</creator><general>Springer-Verlag</general><general>Oxford University Press</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130201</creationdate><title>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</title><author>Yang, Shaoqing ; Xu, Haibo ; Yan, Qiaojuan ; Liu, Yu ; Zhou, Peng ; Jiang, Zhengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acetates</topic><topic>acetone</topic><topic>Biochemistry</topic><topic>Biodegradable materials</topic><topic>Bioenergy/Biofuels/Biochemicals</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - isolation & purification</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>cutin</topic><topic>cutinase</topic><topic>dimethyl sulfoxide</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>filtration</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Genetic Engineering</topic><topic>hexanoic acid</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>industrial applications</topic><topic>Inorganic Chemistry</topic><topic>isopropyl alcohol</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>methanol</topic><topic>Microbiology</topic><topic>Molecular Weight</topic><topic>Plastics</topic><topic>polyacrylamide gel electrophoresis</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - metabolism</topic><topic>polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Proteins</topic><topic>solvents</topic><topic>Solvents - chemistry</topic><topic>Sordariales - enzymology</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>succinic acid</topic><topic>Temperature</topic><topic>thermophilic fungi</topic><topic>Thielavia</topic><topic>Triticum aestivum</topic><topic>Wheat bran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shaoqing</creatorcontrib><creatorcontrib>Xu, Haibo</creatorcontrib><creatorcontrib>Yan, Qiaojuan</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Jiang, Zhengqiang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shaoqing</au><au>Xu, Haibo</au><au>Yan, Qiaojuan</au><au>Liu, Yu</au><au>Zhou, Peng</au><au>Jiang, Zhengqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>217</spage><epage>226</epage><pages>217-226</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml⁻¹) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K ₘ values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h⁻¹ mg⁻¹ protein, 1.1 mg h⁻¹ mg⁻¹ protein, 203.6 mg h⁻¹ mg⁻¹ protein, and 56.4 mg h⁻¹ mg⁻¹ protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23271406</pmid><doi>10.1007/s10295-012-1222-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2013-02, Vol.40 (2), p.217-226 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1291618575 |
source | Oxford Journals Open Access Collection; ABI/INFORM Global |
subjects | acetates acetone Biochemistry Biodegradable materials Bioenergy/Biofuels/Biochemicals Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biotechnology Carbon Carbon sources Carboxylic Ester Hydrolases - chemistry Carboxylic Ester Hydrolases - isolation & purification Carboxylic Ester Hydrolases - metabolism cutin cutinase dimethyl sulfoxide Enzyme Stability Enzymes Esters Ethanol Fermentation filtration Fundamental and applied biological sciences. Psychology Fungi Genetic Engineering hexanoic acid Hydrogen-Ion Concentration Hydrolysis industrial applications Inorganic Chemistry isopropyl alcohol Kinetics Life Sciences methanol Microbiology Molecular Weight Plastics polyacrylamide gel electrophoresis Polyesters - chemistry Polyesters - metabolism polyethylene Polyethylene terephthalate Polymers Proteins solvents Solvents - chemistry Sordariales - enzymology Studies Substrate Specificity succinic acid Temperature thermophilic fungi Thielavia Triticum aestivum Wheat bran |
title | low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=low%20molecular%20mass%20cutinase%20of%20Thielavia%20terrestris%20efficiently%20hydrolyzes%20poly(esters)&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Yang,%20Shaoqing&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=217&rft.epage=226&rft.pages=217-226&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-012-1222-x&rft_dat=%3Cproquest_cross%3E2871332591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-9796e8ed81062f90f79a78dc670b9df653847621b3e3f83ef3b24c9fea2f65543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271881033&rft_id=info:pmid/23271406&rft_oup_id=10.1007/s10295-012-1222-x&rfr_iscdi=true |