Loading…
Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions
For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection...
Saved in:
Published in: | Journal of the American Statistical Association 2012-12, Vol.107 (500), p.1610-1624 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3 |
container_end_page | 1624 |
container_issue | 500 |
container_start_page | 1610 |
container_title | Journal of the American Statistical Association |
container_volume | 107 |
creator | Bondell, Howard D Reich, Brian J |
description | For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection methods place prior distributions on the parameters along with a prior over model space, or equivalently, a mixture prior on the parameters having mass at zero. Since exhaustive enumeration is not feasible, posterior model probabilities are often obtained via long Markov chain Monte Carlo (MCMC) runs. The chosen model can depend heavily on various choices for priors and also posterior thresholds. Alternatively, we propose a conjugate prior only on the full model parameters and use sparse solutions within posterior credible regions to perform selection. These posterior credible regions often have closed-form representations, and it is shown that these sparse solutions can be computed via existing algorithms. The approach is shown to outperform common methods in the high-dimensional setting, particularly under correlation. By searching for a sparse solution within a joint credible region, consistent model selection is established. Furthermore, it is shown that, under certain conditions, the use of marginal credible intervals can give consistent selection up to the case where the dimension grows exponentially in the sample size. The proposed approach successfully accomplishes variable selection in the high-dimensional setting, while avoiding pitfalls that plague typical Bayesian variable selection methods. |
doi_str_mv | 10.1080/01621459.2012.716344 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1312420494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23427359</jstor_id><sourcerecordid>23427359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3</originalsourceid><addsrcrecordid>eNqNkklvFDEQhVsIRBb4Bywt5cKlBy_l7RIEwxKkSCBCIm6Wu21PPOppB7snaPj1eNRJNHAJvtjy--rJVX5V9QyjGUYSvUaYEwxMzQjCZCYwpwAPqn3MqGiIgB8Pd8571UHOS1SWkPJxtUcoSMKw2K8u5nHIIY9uGOuTsLhs3oeVKzdxMH39zmxcDmaoL0wKpu1dfeZ6141Fra-Dqb-6QoXfztbz5GzYAt_coqj5SfXImz67pzf7YXX-8cP3-Ulz-uXT5_nb06bjVIxNq7CHFqhC1lJpgHkGwjlA3nviseAEiOm8xMQqpVqnlLecWhBKSWhtSw-r48n3at2unO1KG8n0-iqFlUkbHU3QfytDuNSLeK0pk0JwUQxe3Rik-HPt8qhXIXeu783g4jprLAlnXHAp_wNFFGMEHO5HKS6dIVBb9OgfdBnXqcy1UERgwcovs0LBRHUp5pycv2sRI72Ng76Ng97GQU9xKGUvdsdzV3T7_wV4PgHLPMa0qxNBmSr6m0kPg49pZX7F1Fs9mk0fk09m6ELW9J4nvJwcvInaLFIpOD8rAC9hlAyA0T_ettZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271756215</pqid></control><display><type>article</type><title>Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Bondell, Howard D ; Reich, Brian J</creator><creatorcontrib>Bondell, Howard D ; Reich, Brian J</creatorcontrib><description>For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection methods place prior distributions on the parameters along with a prior over model space, or equivalently, a mixture prior on the parameters having mass at zero. Since exhaustive enumeration is not feasible, posterior model probabilities are often obtained via long Markov chain Monte Carlo (MCMC) runs. The chosen model can depend heavily on various choices for priors and also posterior thresholds. Alternatively, we propose a conjugate prior only on the full model parameters and use sparse solutions within posterior credible regions to perform selection. These posterior credible regions often have closed-form representations, and it is shown that these sparse solutions can be computed via existing algorithms. The approach is shown to outperform common methods in the high-dimensional setting, particularly under correlation. By searching for a sparse solution within a joint credible region, consistent model selection is established. Furthermore, it is shown that, under certain conditions, the use of marginal credible intervals can give consistent selection up to the case where the dimension grows exponentially in the sample size. The proposed approach successfully accomplishes variable selection in the high-dimensional setting, while avoiding pitfalls that plague typical Bayesian variable selection methods.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.716344</identifier><identifier>PMID: 23482517</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>United States: Taylor & Francis Group</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian method ; Consistency ; Covariance ; Covariance matrices ; Credible region ; data analysis ; Datasets ; Eigenvalues ; Feature selection ; LASSO ; Markov analysis ; Markov chain ; Markovian processes ; Mathematical vectors ; Modeling ; Monte Carlo simulation ; Multidimensional analysis ; Probabilities ; Regression analysis ; Sample size ; screening ; Standard error ; Statistical analysis ; Statistical variance ; Statistics ; Stochastic search ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2012-12, Vol.107 (500), p.1610-1624</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>2012 American Statistical Association</rights><rights>Copyright Taylor & Francis Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3</citedby><cites>FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23427359$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23427359$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,33200,33201,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23482517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondell, Howard D</creatorcontrib><creatorcontrib>Reich, Brian J</creatorcontrib><title>Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection methods place prior distributions on the parameters along with a prior over model space, or equivalently, a mixture prior on the parameters having mass at zero. Since exhaustive enumeration is not feasible, posterior model probabilities are often obtained via long Markov chain Monte Carlo (MCMC) runs. The chosen model can depend heavily on various choices for priors and also posterior thresholds. Alternatively, we propose a conjugate prior only on the full model parameters and use sparse solutions within posterior credible regions to perform selection. These posterior credible regions often have closed-form representations, and it is shown that these sparse solutions can be computed via existing algorithms. The approach is shown to outperform common methods in the high-dimensional setting, particularly under correlation. By searching for a sparse solution within a joint credible region, consistent model selection is established. Furthermore, it is shown that, under certain conditions, the use of marginal credible intervals can give consistent selection up to the case where the dimension grows exponentially in the sample size. The proposed approach successfully accomplishes variable selection in the high-dimensional setting, while avoiding pitfalls that plague typical Bayesian variable selection methods.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Consistency</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Credible region</subject><subject>data analysis</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Feature selection</subject><subject>LASSO</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Markovian processes</subject><subject>Mathematical vectors</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Multidimensional analysis</subject><subject>Probabilities</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>screening</subject><subject>Standard error</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic search</subject><subject>Theory and Methods</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkklvFDEQhVsIRBb4Bywt5cKlBy_l7RIEwxKkSCBCIm6Wu21PPOppB7snaPj1eNRJNHAJvtjy--rJVX5V9QyjGUYSvUaYEwxMzQjCZCYwpwAPqn3MqGiIgB8Pd8571UHOS1SWkPJxtUcoSMKw2K8u5nHIIY9uGOuTsLhs3oeVKzdxMH39zmxcDmaoL0wKpu1dfeZ6141Fra-Dqb-6QoXfztbz5GzYAt_coqj5SfXImz67pzf7YXX-8cP3-Ulz-uXT5_nb06bjVIxNq7CHFqhC1lJpgHkGwjlA3nviseAEiOm8xMQqpVqnlLecWhBKSWhtSw-r48n3at2unO1KG8n0-iqFlUkbHU3QfytDuNSLeK0pk0JwUQxe3Rik-HPt8qhXIXeu783g4jprLAlnXHAp_wNFFGMEHO5HKS6dIVBb9OgfdBnXqcy1UERgwcovs0LBRHUp5pycv2sRI72Ng76Ng97GQU9xKGUvdsdzV3T7_wV4PgHLPMa0qxNBmSr6m0kPg49pZX7F1Fs9mk0fk09m6ELW9J4nvJwcvInaLFIpOD8rAC9hlAyA0T_ettZq</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Bondell, Howard D</creator><creator>Reich, Brian J</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121201</creationdate><title>Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions</title><author>Bondell, Howard D ; Reich, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Consistency</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Credible region</topic><topic>data analysis</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Feature selection</topic><topic>LASSO</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Markovian processes</topic><topic>Mathematical vectors</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Multidimensional analysis</topic><topic>Probabilities</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>screening</topic><topic>Standard error</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic search</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondell, Howard D</creatorcontrib><creatorcontrib>Reich, Brian J</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondell, Howard D</au><au>Reich, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>107</volume><issue>500</issue><spage>1610</spage><epage>1624</epage><pages>1610-1624</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection methods place prior distributions on the parameters along with a prior over model space, or equivalently, a mixture prior on the parameters having mass at zero. Since exhaustive enumeration is not feasible, posterior model probabilities are often obtained via long Markov chain Monte Carlo (MCMC) runs. The chosen model can depend heavily on various choices for priors and also posterior thresholds. Alternatively, we propose a conjugate prior only on the full model parameters and use sparse solutions within posterior credible regions to perform selection. These posterior credible regions often have closed-form representations, and it is shown that these sparse solutions can be computed via existing algorithms. The approach is shown to outperform common methods in the high-dimensional setting, particularly under correlation. By searching for a sparse solution within a joint credible region, consistent model selection is established. Furthermore, it is shown that, under certain conditions, the use of marginal credible intervals can give consistent selection up to the case where the dimension grows exponentially in the sample size. The proposed approach successfully accomplishes variable selection in the high-dimensional setting, while avoiding pitfalls that plague typical Bayesian variable selection methods.</abstract><cop>United States</cop><pub>Taylor & Francis Group</pub><pmid>23482517</pmid><doi>10.1080/01621459.2012.716344</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-274X |
ispartof | Journal of the American Statistical Association, 2012-12, Vol.107 (500), p.1610-1624 |
issn | 1537-274X 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_1312420494 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Algorithms Bayesian analysis Bayesian method Consistency Covariance Covariance matrices Credible region data analysis Datasets Eigenvalues Feature selection LASSO Markov analysis Markov chain Markovian processes Mathematical vectors Modeling Monte Carlo simulation Multidimensional analysis Probabilities Regression analysis Sample size screening Standard error Statistical analysis Statistical variance Statistics Stochastic search Theory and Methods |
title | Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20High-Dimensional%20Bayesian%20Variable%20Selection%20via%20Penalized%20Credible%20Regions&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Bondell,%20Howard%20D&rft.date=2012-12-01&rft.volume=107&rft.issue=500&rft.spage=1610&rft.epage=1624&rft.pages=1610-1624&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2012.716344&rft_dat=%3Cjstor_proqu%3E23427359%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c637t-b91f4b4390dd38a45f547ee40fff2f176242acf812d999be99fd63d479984bdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271756215&rft_id=info:pmid/23482517&rft_jstor_id=23427359&rfr_iscdi=true |