Loading…
Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion
It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 μL) directly int...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (9), p.3603-3608 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243 |
container_end_page | 3608 |
container_issue | 9 |
container_start_page | 3603 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Araldi, Dionéia Ferrari, Luiz Fernando Lotufo, Celina Monteiro Vieira, André Schwambach Athié, Maria Carolina Pedro Figueiredo, Jozi Godoy Duarte, Djane Braz Tambeli, Claudia Herrera Ferreira, Sérgio Henrique Parada, Carlos Amilcar |
description | It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 μL) directly into the L5-DRG of rats, allowing in vivo identification of the role that DRG cell-derived COX-1 and COX-2 play in the development of inflammatory hyperalgesia of peripheral tissue. IL-1β (0.5 pg) or carrageenan (100 ng) was administered in the L5-peripheral field of rat hindpaw and mechanical hyperalgesia was evaluated after 3 h. Administration of a nonselective COX inhibitor (indomethacin), selective COX-1 (valeryl salicylate), or selective COX-2 (SC-236) inhibitors into the L5-DRG prevented the hyperalgesia induced by IL-1β. Similarly, oligodeoxynucleotide-antisense against COX-1 or COX-2, but not oligodeoxynucleotide-mismatch, decreased their respective expressions in the L5-DRG and prevented the hyperalgesia induced by IL-1β in the hindpaw. Immunofluorescence analysis demonstrated that the amount of COX-1 and COX-2, constitutively expressed in TRPV-1 ⁺ cells of the DRG, significantly increased after carrageenan or IL-1β administration. In addition, indomethacin administered into the L5-DRG prevented the increase of PKCε expression in DRG membrane cells induced by carrageenan. Finally, the administration of EP1/EP2 (7.5 ng) or EP4 (10 µg) receptor antagonists into L5-DRG prevented the hyperalgesia induced by IL-1β in the hindpaw. In conclusion, the results of this study suggest that the inflammatory hyperalgesia in peripheral tissue depends on activation of COX-1 and COX-2 in C-fibers, which contribute to the induction and maintenance of sensitization of primary sensory neurons. |
doi_str_mv | 10.1073/pnas.1220668110 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1313420873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42583643</jstor_id><sourcerecordid>42583643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaTZpzz21NeTSi5PRp-1LoSz9CAQSaAM9FITWGnu92JIreQv77yvvpps0J4mZZx5meAl5Q-GCQsEvR2fiBWUMlCophWdkQaGiuRIVPCcLAFbkpWDihJzGuAGASpbwkpwwLoBKwRfk1y2GblxjMH3WuaY3w2AmH3bZejfOxRZjZzKLIzobM--yaY3Z8uZnguuAJmL67GvWh5gcwfspa41r-867V-RFY_qIr-_fM3L35fOP5bf8-ubr1fLTdV6nPae8QSuFsgaFFXylUBWmwmJl60oWBsuKS4SqkFY1amVASChFUylBhYUCKRP8jHw8eMftakBbo5vS6noM3WDCTnvT6f87rlvr1v_RXJYFK2kSfLgXBP97i3HSQxdr7Hvj0G-jppxywaAseELPn6Abvw0unbenmOQUZuHlgaqDjzFgc1yGgp6T03Ny-iG5NPHu8Q1H_l9Uj4B58qhLvkpzBTPw9gBsYkrwSAgmS672gveHfmO8Nm3oor77zoAqACoEpKX-Ajxgshc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313253101</pqid></control><display><type>article</type><title>Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Araldi, Dionéia ; Ferrari, Luiz Fernando ; Lotufo, Celina Monteiro ; Vieira, André Schwambach ; Athié, Maria Carolina Pedro ; Figueiredo, Jozi Godoy ; Duarte, Djane Braz ; Tambeli, Claudia Herrera ; Ferreira, Sérgio Henrique ; Parada, Carlos Amilcar</creator><creatorcontrib>Araldi, Dionéia ; Ferrari, Luiz Fernando ; Lotufo, Celina Monteiro ; Vieira, André Schwambach ; Athié, Maria Carolina Pedro ; Figueiredo, Jozi Godoy ; Duarte, Djane Braz ; Tambeli, Claudia Herrera ; Ferreira, Sérgio Henrique ; Parada, Carlos Amilcar</creatorcontrib><description>It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 μL) directly into the L5-DRG of rats, allowing in vivo identification of the role that DRG cell-derived COX-1 and COX-2 play in the development of inflammatory hyperalgesia of peripheral tissue. IL-1β (0.5 pg) or carrageenan (100 ng) was administered in the L5-peripheral field of rat hindpaw and mechanical hyperalgesia was evaluated after 3 h. Administration of a nonselective COX inhibitor (indomethacin), selective COX-1 (valeryl salicylate), or selective COX-2 (SC-236) inhibitors into the L5-DRG prevented the hyperalgesia induced by IL-1β. Similarly, oligodeoxynucleotide-antisense against COX-1 or COX-2, but not oligodeoxynucleotide-mismatch, decreased their respective expressions in the L5-DRG and prevented the hyperalgesia induced by IL-1β in the hindpaw. Immunofluorescence analysis demonstrated that the amount of COX-1 and COX-2, constitutively expressed in TRPV-1 ⁺ cells of the DRG, significantly increased after carrageenan or IL-1β administration. In addition, indomethacin administered into the L5-DRG prevented the increase of PKCε expression in DRG membrane cells induced by carrageenan. Finally, the administration of EP1/EP2 (7.5 ng) or EP4 (10 µg) receptor antagonists into L5-DRG prevented the hyperalgesia induced by IL-1β in the hindpaw. In conclusion, the results of this study suggest that the inflammatory hyperalgesia in peripheral tissue depends on activation of COX-1 and COX-2 in C-fibers, which contribute to the induction and maintenance of sensitization of primary sensory neurons.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220668110</identifier><identifier>PMID: 23401543</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Afferent neurons ; Animals ; Biological Sciences ; Biosynthesis ; Carrageenan - pharmacology ; Cyclooxygenase 1 - metabolism ; Cyclooxygenase 2 - metabolism ; Cyclooxygenase inhibitors ; Cyclooxygenase Inhibitors - administration & dosage ; Cyclooxygenase Inhibitors - pharmacology ; Drug use ; Enzyme Activation - drug effects ; Ganglia, Spinal - drug effects ; Ganglia, Spinal - enzymology ; Ganglia, Spinal - pathology ; Gene expression ; Gene Knockdown Techniques ; Hyperalgesia ; Hyperalgesia - complications ; Hyperalgesia - enzymology ; Hyperalgesia - pathology ; Indomethacin - administration & dosage ; Indomethacin - pharmacology ; Inflammation - complications ; Inflammation - enzymology ; Inflammation - pathology ; Interleukin-1beta - pharmacology ; Lipids ; Lumbar Vertebrae - drug effects ; Lumbar Vertebrae - pathology ; Male ; Membrane Proteins - metabolism ; Neurochemistry ; Neurology ; Neurons ; Pain ; Prostaglandins ; Protein isoforms ; Protein Kinase C-epsilon - metabolism ; Protein Transport - drug effects ; Rats ; Rats, Wistar ; Receptors ; Receptors, Prostaglandin E - antagonists & inhibitors ; Receptors, Prostaglandin E - metabolism ; Rodents ; Salicylates ; Spinal cord ; TRPV Cation Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (9), p.3603-3608</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 26, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243</citedby><cites>FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42583643$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42583643$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23401543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Araldi, Dionéia</creatorcontrib><creatorcontrib>Ferrari, Luiz Fernando</creatorcontrib><creatorcontrib>Lotufo, Celina Monteiro</creatorcontrib><creatorcontrib>Vieira, André Schwambach</creatorcontrib><creatorcontrib>Athié, Maria Carolina Pedro</creatorcontrib><creatorcontrib>Figueiredo, Jozi Godoy</creatorcontrib><creatorcontrib>Duarte, Djane Braz</creatorcontrib><creatorcontrib>Tambeli, Claudia Herrera</creatorcontrib><creatorcontrib>Ferreira, Sérgio Henrique</creatorcontrib><creatorcontrib>Parada, Carlos Amilcar</creatorcontrib><title>Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 μL) directly into the L5-DRG of rats, allowing in vivo identification of the role that DRG cell-derived COX-1 and COX-2 play in the development of inflammatory hyperalgesia of peripheral tissue. IL-1β (0.5 pg) or carrageenan (100 ng) was administered in the L5-peripheral field of rat hindpaw and mechanical hyperalgesia was evaluated after 3 h. Administration of a nonselective COX inhibitor (indomethacin), selective COX-1 (valeryl salicylate), or selective COX-2 (SC-236) inhibitors into the L5-DRG prevented the hyperalgesia induced by IL-1β. Similarly, oligodeoxynucleotide-antisense against COX-1 or COX-2, but not oligodeoxynucleotide-mismatch, decreased their respective expressions in the L5-DRG and prevented the hyperalgesia induced by IL-1β in the hindpaw. Immunofluorescence analysis demonstrated that the amount of COX-1 and COX-2, constitutively expressed in TRPV-1 ⁺ cells of the DRG, significantly increased after carrageenan or IL-1β administration. In addition, indomethacin administered into the L5-DRG prevented the increase of PKCε expression in DRG membrane cells induced by carrageenan. Finally, the administration of EP1/EP2 (7.5 ng) or EP4 (10 µg) receptor antagonists into L5-DRG prevented the hyperalgesia induced by IL-1β in the hindpaw. In conclusion, the results of this study suggest that the inflammatory hyperalgesia in peripheral tissue depends on activation of COX-1 and COX-2 in C-fibers, which contribute to the induction and maintenance of sensitization of primary sensory neurons.</description><subject>Afferent neurons</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carrageenan - pharmacology</subject><subject>Cyclooxygenase 1 - metabolism</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Cyclooxygenase inhibitors</subject><subject>Cyclooxygenase Inhibitors - administration & dosage</subject><subject>Cyclooxygenase Inhibitors - pharmacology</subject><subject>Drug use</subject><subject>Enzyme Activation - drug effects</subject><subject>Ganglia, Spinal - drug effects</subject><subject>Ganglia, Spinal - enzymology</subject><subject>Ganglia, Spinal - pathology</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Hyperalgesia</subject><subject>Hyperalgesia - complications</subject><subject>Hyperalgesia - enzymology</subject><subject>Hyperalgesia - pathology</subject><subject>Indomethacin - administration & dosage</subject><subject>Indomethacin - pharmacology</subject><subject>Inflammation - complications</subject><subject>Inflammation - enzymology</subject><subject>Inflammation - pathology</subject><subject>Interleukin-1beta - pharmacology</subject><subject>Lipids</subject><subject>Lumbar Vertebrae - drug effects</subject><subject>Lumbar Vertebrae - pathology</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Pain</subject><subject>Prostaglandins</subject><subject>Protein isoforms</subject><subject>Protein Kinase C-epsilon - metabolism</subject><subject>Protein Transport - drug effects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Receptors, Prostaglandin E - antagonists & inhibitors</subject><subject>Receptors, Prostaglandin E - metabolism</subject><subject>Rodents</subject><subject>Salicylates</subject><subject>Spinal cord</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhkVpaTZpzz21NeTSi5PRp-1LoSz9CAQSaAM9FITWGnu92JIreQv77yvvpps0J4mZZx5meAl5Q-GCQsEvR2fiBWUMlCophWdkQaGiuRIVPCcLAFbkpWDihJzGuAGASpbwkpwwLoBKwRfk1y2GblxjMH3WuaY3w2AmH3bZejfOxRZjZzKLIzobM--yaY3Z8uZnguuAJmL67GvWh5gcwfspa41r-867V-RFY_qIr-_fM3L35fOP5bf8-ubr1fLTdV6nPae8QSuFsgaFFXylUBWmwmJl60oWBsuKS4SqkFY1amVASChFUylBhYUCKRP8jHw8eMftakBbo5vS6noM3WDCTnvT6f87rlvr1v_RXJYFK2kSfLgXBP97i3HSQxdr7Hvj0G-jppxywaAseELPn6Abvw0unbenmOQUZuHlgaqDjzFgc1yGgp6T03Ny-iG5NPHu8Q1H_l9Uj4B58qhLvkpzBTPw9gBsYkrwSAgmS672gveHfmO8Nm3oor77zoAqACoEpKX-Ajxgshc</recordid><startdate>20130226</startdate><enddate>20130226</enddate><creator>Araldi, Dionéia</creator><creator>Ferrari, Luiz Fernando</creator><creator>Lotufo, Celina Monteiro</creator><creator>Vieira, André Schwambach</creator><creator>Athié, Maria Carolina Pedro</creator><creator>Figueiredo, Jozi Godoy</creator><creator>Duarte, Djane Braz</creator><creator>Tambeli, Claudia Herrera</creator><creator>Ferreira, Sérgio Henrique</creator><creator>Parada, Carlos Amilcar</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130226</creationdate><title>Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion</title><author>Araldi, Dionéia ; Ferrari, Luiz Fernando ; Lotufo, Celina Monteiro ; Vieira, André Schwambach ; Athié, Maria Carolina Pedro ; Figueiredo, Jozi Godoy ; Duarte, Djane Braz ; Tambeli, Claudia Herrera ; Ferreira, Sérgio Henrique ; Parada, Carlos Amilcar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Afferent neurons</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carrageenan - pharmacology</topic><topic>Cyclooxygenase 1 - metabolism</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Cyclooxygenase inhibitors</topic><topic>Cyclooxygenase Inhibitors - administration & dosage</topic><topic>Cyclooxygenase Inhibitors - pharmacology</topic><topic>Drug use</topic><topic>Enzyme Activation - drug effects</topic><topic>Ganglia, Spinal - drug effects</topic><topic>Ganglia, Spinal - enzymology</topic><topic>Ganglia, Spinal - pathology</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Hyperalgesia</topic><topic>Hyperalgesia - complications</topic><topic>Hyperalgesia - enzymology</topic><topic>Hyperalgesia - pathology</topic><topic>Indomethacin - administration & dosage</topic><topic>Indomethacin - pharmacology</topic><topic>Inflammation - complications</topic><topic>Inflammation - enzymology</topic><topic>Inflammation - pathology</topic><topic>Interleukin-1beta - pharmacology</topic><topic>Lipids</topic><topic>Lumbar Vertebrae - drug effects</topic><topic>Lumbar Vertebrae - pathology</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Pain</topic><topic>Prostaglandins</topic><topic>Protein isoforms</topic><topic>Protein Kinase C-epsilon - metabolism</topic><topic>Protein Transport - drug effects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Receptors, Prostaglandin E - antagonists & inhibitors</topic><topic>Receptors, Prostaglandin E - metabolism</topic><topic>Rodents</topic><topic>Salicylates</topic><topic>Spinal cord</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araldi, Dionéia</creatorcontrib><creatorcontrib>Ferrari, Luiz Fernando</creatorcontrib><creatorcontrib>Lotufo, Celina Monteiro</creatorcontrib><creatorcontrib>Vieira, André Schwambach</creatorcontrib><creatorcontrib>Athié, Maria Carolina Pedro</creatorcontrib><creatorcontrib>Figueiredo, Jozi Godoy</creatorcontrib><creatorcontrib>Duarte, Djane Braz</creatorcontrib><creatorcontrib>Tambeli, Claudia Herrera</creatorcontrib><creatorcontrib>Ferreira, Sérgio Henrique</creatorcontrib><creatorcontrib>Parada, Carlos Amilcar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araldi, Dionéia</au><au>Ferrari, Luiz Fernando</au><au>Lotufo, Celina Monteiro</au><au>Vieira, André Schwambach</au><au>Athié, Maria Carolina Pedro</au><au>Figueiredo, Jozi Godoy</au><au>Duarte, Djane Braz</au><au>Tambeli, Claudia Herrera</au><au>Ferreira, Sérgio Henrique</au><au>Parada, Carlos Amilcar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-02-26</date><risdate>2013</risdate><volume>110</volume><issue>9</issue><spage>3603</spage><epage>3608</epage><pages>3603-3608</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 μL) directly into the L5-DRG of rats, allowing in vivo identification of the role that DRG cell-derived COX-1 and COX-2 play in the development of inflammatory hyperalgesia of peripheral tissue. IL-1β (0.5 pg) or carrageenan (100 ng) was administered in the L5-peripheral field of rat hindpaw and mechanical hyperalgesia was evaluated after 3 h. Administration of a nonselective COX inhibitor (indomethacin), selective COX-1 (valeryl salicylate), or selective COX-2 (SC-236) inhibitors into the L5-DRG prevented the hyperalgesia induced by IL-1β. Similarly, oligodeoxynucleotide-antisense against COX-1 or COX-2, but not oligodeoxynucleotide-mismatch, decreased their respective expressions in the L5-DRG and prevented the hyperalgesia induced by IL-1β in the hindpaw. Immunofluorescence analysis demonstrated that the amount of COX-1 and COX-2, constitutively expressed in TRPV-1 ⁺ cells of the DRG, significantly increased after carrageenan or IL-1β administration. In addition, indomethacin administered into the L5-DRG prevented the increase of PKCε expression in DRG membrane cells induced by carrageenan. Finally, the administration of EP1/EP2 (7.5 ng) or EP4 (10 µg) receptor antagonists into L5-DRG prevented the hyperalgesia induced by IL-1β in the hindpaw. In conclusion, the results of this study suggest that the inflammatory hyperalgesia in peripheral tissue depends on activation of COX-1 and COX-2 in C-fibers, which contribute to the induction and maintenance of sensitization of primary sensory neurons.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23401543</pmid><doi>10.1073/pnas.1220668110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (9), p.3603-3608 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1313420873 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Afferent neurons Animals Biological Sciences Biosynthesis Carrageenan - pharmacology Cyclooxygenase 1 - metabolism Cyclooxygenase 2 - metabolism Cyclooxygenase inhibitors Cyclooxygenase Inhibitors - administration & dosage Cyclooxygenase Inhibitors - pharmacology Drug use Enzyme Activation - drug effects Ganglia, Spinal - drug effects Ganglia, Spinal - enzymology Ganglia, Spinal - pathology Gene expression Gene Knockdown Techniques Hyperalgesia Hyperalgesia - complications Hyperalgesia - enzymology Hyperalgesia - pathology Indomethacin - administration & dosage Indomethacin - pharmacology Inflammation - complications Inflammation - enzymology Inflammation - pathology Interleukin-1beta - pharmacology Lipids Lumbar Vertebrae - drug effects Lumbar Vertebrae - pathology Male Membrane Proteins - metabolism Neurochemistry Neurology Neurons Pain Prostaglandins Protein isoforms Protein Kinase C-epsilon - metabolism Protein Transport - drug effects Rats Rats, Wistar Receptors Receptors, Prostaglandin E - antagonists & inhibitors Receptors, Prostaglandin E - metabolism Rodents Salicylates Spinal cord TRPV Cation Channels - metabolism |
title | Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripheral%20inflammatory%20hyperalgesia%20depends%20on%20the%20COX%20increase%20in%20the%20dorsal%20root%20ganglion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Araldi,%20Dion%C3%A9ia&rft.date=2013-02-26&rft.volume=110&rft.issue=9&rft.spage=3603&rft.epage=3608&rft.pages=3603-3608&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1220668110&rft_dat=%3Cjstor_proqu%3E42583643%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-fed546dae4d43b6e67a9e7bdc957ae8935e0975d6f6ba045084f96414d07e1243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313253101&rft_id=info:pmid/23401543&rft_jstor_id=42583643&rfr_iscdi=true |