Loading…

Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2

Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as...

Full description

Saved in:
Bibliographic Details
Published in:Insect molecular biology 2013-04, Vol.22 (2), p.183-198
Main Authors: Dederer, H., Berger, M., Meyer, T., Werr, M., Ilg, T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 198
container_issue 2
container_start_page 183
container_title Insect molecular biology
container_volume 22
creator Dederer, H.
Berger, M.
Meyer, T.
Werr, M.
Ilg, T.
description Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh‐gated ion channels with distinct dose–response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50] = 80 nM; nH = 1.05), and Lcα2/Ggβ2 (EC50 = 5.37 μM, nH = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α‐bungarotoxin‐sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α‐bungarotoxin‐resistant Lcα2/Ggβ2 showed a 30‐fold lower sensitivity to this insecticide (EC50 = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50, Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure‐activity and structure‐selectivity relationships. In the case of N‐ethyl‐acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl‐α‐methylcholine and trimethyl‐(3‐methoxy‐3‐oxopropyl)ammonium, followed by acetylhomocholine and trimethyl‐(4‐oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect‐specific nAChR agonists using structure‐based or in silico methods.
doi_str_mv 10.1111/imb.12014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1314892979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1314892979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2044-44ec1e2d1019811c83fa60b704d7959e51c669ca5a86410f1f55ee2b8826b1313</originalsourceid><addsrcrecordid>eNqNks1u1DAQgC0EokvhwAsgH7mk6584P0eoSqm0gKoFlZvlOBNlaDYJtrMljwUP0qfhATBNuwdO-OAZ2d83tuwh5CVnJzyONe6qEy4YTx-RFZeZSoQq5GOyYmUmEs5ydUSeef-NMVaUWfmUHAkpJVeyWJHf2-AmGyYHibEB9xhm6qAzAYfetzh6OjTUWAhzZ9uhwx5oDQ73EdiDpzcYWrqZLHZoqJ1Gh72hPdohYJz_ER1YGMPg6O1PTk1fxyion6qpx-Ap9tS2aK-hp7e_Duu0nSuH9cFduGE3God-6JcLPHj_cXC6jsWfkyeN6Ty8uI_H5Mu7s8-n75PNp_OL0zebBAVL0yRNwXIQNWe8LDi3hWxMxqqcpXVeqhIUt1lWWqNMkaWcNbxRCkBURSGyiksuj8nrpe7ohu8T-KB36C10nelhmLyOTFqUoszLiL66R6dqB7WOL7kzbtYPPxWB9QLcYAfzYZ8z_bcFdGwBfdcC-uLD27skGslioA_w42AYd62zXOZKX30811txeZV_3V5qKf8AMb68_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314892979</pqid></control><display><type>article</type><title>Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2</title><source>Wiley</source><creator>Dederer, H. ; Berger, M. ; Meyer, T. ; Werr, M. ; Ilg, T.</creator><creatorcontrib>Dederer, H. ; Berger, M. ; Meyer, T. ; Werr, M. ; Ilg, T.</creatorcontrib><description>Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh‐gated ion channels with distinct dose–response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50] = 80 nM; nH = 1.05), and Lcα2/Ggβ2 (EC50 = 5.37 μM, nH = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α‐bungarotoxin‐sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α‐bungarotoxin‐resistant Lcα2/Ggβ2 showed a 30‐fold lower sensitivity to this insecticide (EC50 = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50, Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure‐activity and structure‐selectivity relationships. In the case of N‐ethyl‐acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl‐α‐methylcholine and trimethyl‐(3‐methoxy‐3‐oxopropyl)ammonium, followed by acetylhomocholine and trimethyl‐(4‐oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect‐specific nAChR agonists using structure‐based or in silico methods.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/imb.12014</identifier><identifier>PMID: 23331538</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - analogs &amp; derivatives ; Acetylcholine - pharmacology ; acetylcholine analogues ; Amino Acid Sequence ; Animals ; Base Sequence ; Bungarotoxins - pharmacology ; Chickens ; Cloning, Molecular ; Diptera ; Dose-Response Relationship, Drug ; Female ; Imidazoles - pharmacology ; Insect Proteins - genetics ; insecticide target ; Insecticides - chemistry ; Insecticides - pharmacology ; Lucilia cuprina ; Molecular Sequence Data ; Neonicotinoids ; nicotinic acetylcholine receptor ; Nicotinic Agonists - chemistry ; Nicotinic Agonists - pharmacology ; Nitro Compounds - pharmacology ; Oocytes - drug effects ; pesticide target ; Phylogeny ; Protein Subunits ; Receptors, Nicotinic - genetics ; Receptors, Nicotinic - metabolism ; Recombinant Proteins - genetics ; sheep blowfly ; structure activity relationships ; Structure-Activity Relationship</subject><ispartof>Insect molecular biology, 2013-04, Vol.22 (2), p.183-198</ispartof><rights>2013 Royal Entomological Society</rights><rights>2013 Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23331538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dederer, H.</creatorcontrib><creatorcontrib>Berger, M.</creatorcontrib><creatorcontrib>Meyer, T.</creatorcontrib><creatorcontrib>Werr, M.</creatorcontrib><creatorcontrib>Ilg, T.</creatorcontrib><title>Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh‐gated ion channels with distinct dose–response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50] = 80 nM; nH = 1.05), and Lcα2/Ggβ2 (EC50 = 5.37 μM, nH = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α‐bungarotoxin‐sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α‐bungarotoxin‐resistant Lcα2/Ggβ2 showed a 30‐fold lower sensitivity to this insecticide (EC50 = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50, Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure‐activity and structure‐selectivity relationships. In the case of N‐ethyl‐acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl‐α‐methylcholine and trimethyl‐(3‐methoxy‐3‐oxopropyl)ammonium, followed by acetylhomocholine and trimethyl‐(4‐oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect‐specific nAChR agonists using structure‐based or in silico methods.</description><subject>Acetylcholine - analogs &amp; derivatives</subject><subject>Acetylcholine - pharmacology</subject><subject>acetylcholine analogues</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bungarotoxins - pharmacology</subject><subject>Chickens</subject><subject>Cloning, Molecular</subject><subject>Diptera</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Imidazoles - pharmacology</subject><subject>Insect Proteins - genetics</subject><subject>insecticide target</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - pharmacology</subject><subject>Lucilia cuprina</subject><subject>Molecular Sequence Data</subject><subject>Neonicotinoids</subject><subject>nicotinic acetylcholine receptor</subject><subject>Nicotinic Agonists - chemistry</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Nitro Compounds - pharmacology</subject><subject>Oocytes - drug effects</subject><subject>pesticide target</subject><subject>Phylogeny</subject><subject>Protein Subunits</subject><subject>Receptors, Nicotinic - genetics</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>sheep blowfly</subject><subject>structure activity relationships</subject><subject>Structure-Activity Relationship</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1DAQgC0EokvhwAsgH7mk6584P0eoSqm0gKoFlZvlOBNlaDYJtrMljwUP0qfhATBNuwdO-OAZ2d83tuwh5CVnJzyONe6qEy4YTx-RFZeZSoQq5GOyYmUmEs5ydUSeef-NMVaUWfmUHAkpJVeyWJHf2-AmGyYHibEB9xhm6qAzAYfetzh6OjTUWAhzZ9uhwx5oDQ73EdiDpzcYWrqZLHZoqJ1Gh72hPdohYJz_ER1YGMPg6O1PTk1fxyion6qpx-Ap9tS2aK-hp7e_Duu0nSuH9cFduGE3God-6JcLPHj_cXC6jsWfkyeN6Ty8uI_H5Mu7s8-n75PNp_OL0zebBAVL0yRNwXIQNWe8LDi3hWxMxqqcpXVeqhIUt1lWWqNMkaWcNbxRCkBURSGyiksuj8nrpe7ohu8T-KB36C10nelhmLyOTFqUoszLiL66R6dqB7WOL7kzbtYPPxWB9QLcYAfzYZ8z_bcFdGwBfdcC-uLD27skGslioA_w42AYd62zXOZKX30811txeZV_3V5qKf8AMb68_A</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Dederer, H.</creator><creator>Berger, M.</creator><creator>Meyer, T.</creator><creator>Werr, M.</creator><creator>Ilg, T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201304</creationdate><title>Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2</title><author>Dederer, H. ; Berger, M. ; Meyer, T. ; Werr, M. ; Ilg, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2044-44ec1e2d1019811c83fa60b704d7959e51c669ca5a86410f1f55ee2b8826b1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholine - analogs &amp; derivatives</topic><topic>Acetylcholine - pharmacology</topic><topic>acetylcholine analogues</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bungarotoxins - pharmacology</topic><topic>Chickens</topic><topic>Cloning, Molecular</topic><topic>Diptera</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Imidazoles - pharmacology</topic><topic>Insect Proteins - genetics</topic><topic>insecticide target</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - pharmacology</topic><topic>Lucilia cuprina</topic><topic>Molecular Sequence Data</topic><topic>Neonicotinoids</topic><topic>nicotinic acetylcholine receptor</topic><topic>Nicotinic Agonists - chemistry</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Nitro Compounds - pharmacology</topic><topic>Oocytes - drug effects</topic><topic>pesticide target</topic><topic>Phylogeny</topic><topic>Protein Subunits</topic><topic>Receptors, Nicotinic - genetics</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>sheep blowfly</topic><topic>structure activity relationships</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dederer, H.</creatorcontrib><creatorcontrib>Berger, M.</creatorcontrib><creatorcontrib>Meyer, T.</creatorcontrib><creatorcontrib>Werr, M.</creatorcontrib><creatorcontrib>Ilg, T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dederer, H.</au><au>Berger, M.</au><au>Meyer, T.</au><au>Werr, M.</au><au>Ilg, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>183</spage><epage>198</epage><pages>183-198</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh‐gated ion channels with distinct dose–response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50] = 80 nM; nH = 1.05), and Lcα2/Ggβ2 (EC50 = 5.37 μM, nH = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α‐bungarotoxin‐sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α‐bungarotoxin‐resistant Lcα2/Ggβ2 showed a 30‐fold lower sensitivity to this insecticide (EC50 = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50, Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure‐activity and structure‐selectivity relationships. In the case of N‐ethyl‐acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl‐α‐methylcholine and trimethyl‐(3‐methoxy‐3‐oxopropyl)ammonium, followed by acetylhomocholine and trimethyl‐(4‐oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect‐specific nAChR agonists using structure‐based or in silico methods.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23331538</pmid><doi>10.1111/imb.12014</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1075
ispartof Insect molecular biology, 2013-04, Vol.22 (2), p.183-198
issn 0962-1075
1365-2583
language eng
recordid cdi_proquest_miscellaneous_1314892979
source Wiley
subjects Acetylcholine - analogs & derivatives
Acetylcholine - pharmacology
acetylcholine analogues
Amino Acid Sequence
Animals
Base Sequence
Bungarotoxins - pharmacology
Chickens
Cloning, Molecular
Diptera
Dose-Response Relationship, Drug
Female
Imidazoles - pharmacology
Insect Proteins - genetics
insecticide target
Insecticides - chemistry
Insecticides - pharmacology
Lucilia cuprina
Molecular Sequence Data
Neonicotinoids
nicotinic acetylcholine receptor
Nicotinic Agonists - chemistry
Nicotinic Agonists - pharmacology
Nitro Compounds - pharmacology
Oocytes - drug effects
pesticide target
Phylogeny
Protein Subunits
Receptors, Nicotinic - genetics
Receptors, Nicotinic - metabolism
Recombinant Proteins - genetics
sheep blowfly
structure activity relationships
Structure-Activity Relationship
title Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-activity%20relationships%20of%20acetylcholine%20derivatives%20with%20Lucilia%20cuprina%20nicotinic%20acetylcholine%20receptor%20%CE%B11%20and%20%CE%B12%20subunits%20in%20chicken%20%CE%B22%20subunit%20hybrid%20receptors%20in%20comparison%20with%20chicken%20nicotinic%20acetylcholine%20receptor%20%CE%B14/%CE%B22&rft.jtitle=Insect%20molecular%20biology&rft.au=Dederer,%20H.&rft.date=2013-04&rft.volume=22&rft.issue=2&rft.spage=183&rft.epage=198&rft.pages=183-198&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/imb.12014&rft_dat=%3Cproquest_pubme%3E1314892979%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2044-44ec1e2d1019811c83fa60b704d7959e51c669ca5a86410f1f55ee2b8826b1313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1314892979&rft_id=info:pmid/23331538&rfr_iscdi=true