Loading…
Anti-bacterial performance of Zirconia coatings on Titanium implants
Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their compositi...
Saved in:
Published in: | Thin solid films 2013-01, Vol.528, p.151-156 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373 |
container_end_page | 156 |
container_issue | |
container_start_page | 151 |
container_title | Thin solid films |
container_volume | 528 |
creator | Huang, Heng-Li Chang, Yin-Yu Weng, Jui-Ching Chen, Ya-Chi Lai, Chih-Ho Shieh, Tzong-Ming |
description | Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials.
► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance. |
doi_str_mv | 10.1016/j.tsf.2012.07.143 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315605649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012014137</els_id><sourcerecordid>1315605649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBD6BLg0STMOOPOBHV6Tg-pJNojobGGpwx8iqJF9uLxL_Hpz1RUk3zvO_MPEK8RhgQcHx3HGoJgwSUA9gBtXoiDjjZuZdW4VNxANDQjzDDc_GilCNAI6U6iA_Xe439D_KVc6S1O3EOKW-0e-5S6L7H7NMeqfOJatx_li7t3X2stMfz1sXttNJey0vxLNBa-NXjvBLfPt7e33zu775--nJzfdd7Lcfae6lM4BEWJOJglsXK2RjiWbNm9HqxsyUtySBCmEDRSAuYYCZc9DQqq67E20vvKadfZy7VbbF4XtsRnM7FoUIzghn13FC8oD6nUjIHd8pxo_zHIbgHY-7omjH3YMyBdc1Yy7x5rKfiaQ25WYjlX1BanCaFsnHvLxy3X39Hzq74yM3YEjP76pYU_7PlL6-SgHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315605649</pqid></control><display><type>article</type><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><source>ScienceDirect Journals</source><creator>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</creator><creatorcontrib>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</creatorcontrib><description>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials.
► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.07.143</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actinobacillus actinomycetemcomitans ; Antibacterial ; Coating ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Silver ; Sputtering ; Staphylococcus aureus ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Zirconia</subject><ispartof>Thin solid films, 2013-01, Vol.528, p.151-156</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</citedby><cites>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27188312$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Heng-Li</creatorcontrib><creatorcontrib>Chang, Yin-Yu</creatorcontrib><creatorcontrib>Weng, Jui-Ching</creatorcontrib><creatorcontrib>Chen, Ya-Chi</creatorcontrib><creatorcontrib>Lai, Chih-Ho</creatorcontrib><creatorcontrib>Shieh, Tzong-Ming</creatorcontrib><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><title>Thin solid films</title><description>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials.
► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</description><subject>Actinobacillus actinomycetemcomitans</subject><subject>Antibacterial</subject><subject>Coating</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Silver</subject><subject>Sputtering</subject><subject>Staphylococcus aureus</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Zirconia</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBD6BLg0STMOOPOBHV6Tg-pJNojobGGpwx8iqJF9uLxL_Hpz1RUk3zvO_MPEK8RhgQcHx3HGoJgwSUA9gBtXoiDjjZuZdW4VNxANDQjzDDc_GilCNAI6U6iA_Xe439D_KVc6S1O3EOKW-0e-5S6L7H7NMeqfOJatx_li7t3X2stMfz1sXttNJey0vxLNBa-NXjvBLfPt7e33zu775--nJzfdd7Lcfae6lM4BEWJOJglsXK2RjiWbNm9HqxsyUtySBCmEDRSAuYYCZc9DQqq67E20vvKadfZy7VbbF4XtsRnM7FoUIzghn13FC8oD6nUjIHd8pxo_zHIbgHY-7omjH3YMyBdc1Yy7x5rKfiaQ25WYjlX1BanCaFsnHvLxy3X39Hzq74yM3YEjP76pYU_7PlL6-SgHg</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Huang, Heng-Li</creator><creator>Chang, Yin-Yu</creator><creator>Weng, Jui-Ching</creator><creator>Chen, Ya-Chi</creator><creator>Lai, Chih-Ho</creator><creator>Shieh, Tzong-Ming</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20130115</creationdate><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><author>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actinobacillus actinomycetemcomitans</topic><topic>Antibacterial</topic><topic>Coating</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Silver</topic><topic>Sputtering</topic><topic>Staphylococcus aureus</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Heng-Li</creatorcontrib><creatorcontrib>Chang, Yin-Yu</creatorcontrib><creatorcontrib>Weng, Jui-Ching</creatorcontrib><creatorcontrib>Chen, Ya-Chi</creatorcontrib><creatorcontrib>Lai, Chih-Ho</creatorcontrib><creatorcontrib>Shieh, Tzong-Ming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Heng-Li</au><au>Chang, Yin-Yu</au><au>Weng, Jui-Ching</au><au>Chen, Ya-Chi</au><au>Lai, Chih-Ho</au><au>Shieh, Tzong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-bacterial performance of Zirconia coatings on Titanium implants</atitle><jtitle>Thin solid films</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>528</volume><spage>151</spage><epage>156</epage><pages>151-156</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials.
► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.07.143</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2013-01, Vol.528, p.151-156 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315605649 |
source | ScienceDirect Journals |
subjects | Actinobacillus actinomycetemcomitans Antibacterial Coating Condensed matter: structure, mechanical and thermal properties Copper Cross-disciplinary physics: materials science rheology Deposition by sputtering Exact sciences and technology Materials science Mechanical and acoustical properties Methods of deposition of films and coatings film growth and epitaxy Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Physical properties of thin films, nonelectronic Physics Silver Sputtering Staphylococcus aureus Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Zirconia |
title | Anti-bacterial performance of Zirconia coatings on Titanium implants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-bacterial%20performance%20of%20Zirconia%20coatings%20on%20Titanium%20implants&rft.jtitle=Thin%20solid%20films&rft.au=Huang,%20Heng-Li&rft.date=2013-01-15&rft.volume=528&rft.spage=151&rft.epage=156&rft.pages=151-156&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.07.143&rft_dat=%3Cproquest_cross%3E1315605649%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315605649&rft_id=info:pmid/&rfr_iscdi=true |