Loading…

Anti-bacterial performance of Zirconia coatings on Titanium implants

Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their compositi...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2013-01, Vol.528, p.151-156
Main Authors: Huang, Heng-Li, Chang, Yin-Yu, Weng, Jui-Ching, Chen, Ya-Chi, Lai, Chih-Ho, Shieh, Tzong-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373
cites cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373
container_end_page 156
container_issue
container_start_page 151
container_title Thin solid films
container_volume 528
creator Huang, Heng-Li
Chang, Yin-Yu
Weng, Jui-Ching
Chen, Ya-Chi
Lai, Chih-Ho
Shieh, Tzong-Ming
description Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials. ► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.
doi_str_mv 10.1016/j.tsf.2012.07.143
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315605649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012014137</els_id><sourcerecordid>1315605649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBD6BLg0STMOOPOBHV6Tg-pJNojobGGpwx8iqJF9uLxL_Hpz1RUk3zvO_MPEK8RhgQcHx3HGoJgwSUA9gBtXoiDjjZuZdW4VNxANDQjzDDc_GilCNAI6U6iA_Xe439D_KVc6S1O3EOKW-0e-5S6L7H7NMeqfOJatx_li7t3X2stMfz1sXttNJey0vxLNBa-NXjvBLfPt7e33zu775--nJzfdd7Lcfae6lM4BEWJOJglsXK2RjiWbNm9HqxsyUtySBCmEDRSAuYYCZc9DQqq67E20vvKadfZy7VbbF4XtsRnM7FoUIzghn13FC8oD6nUjIHd8pxo_zHIbgHY-7omjH3YMyBdc1Yy7x5rKfiaQ25WYjlX1BanCaFsnHvLxy3X39Hzq74yM3YEjP76pYU_7PlL6-SgHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315605649</pqid></control><display><type>article</type><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><source>ScienceDirect Journals</source><creator>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</creator><creatorcontrib>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</creatorcontrib><description>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials. ► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.07.143</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actinobacillus actinomycetemcomitans ; Antibacterial ; Coating ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Silver ; Sputtering ; Staphylococcus aureus ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Zirconia</subject><ispartof>Thin solid films, 2013-01, Vol.528, p.151-156</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</citedby><cites>FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27188312$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Heng-Li</creatorcontrib><creatorcontrib>Chang, Yin-Yu</creatorcontrib><creatorcontrib>Weng, Jui-Ching</creatorcontrib><creatorcontrib>Chen, Ya-Chi</creatorcontrib><creatorcontrib>Lai, Chih-Ho</creatorcontrib><creatorcontrib>Shieh, Tzong-Ming</creatorcontrib><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><title>Thin solid films</title><description>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials. ► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</description><subject>Actinobacillus actinomycetemcomitans</subject><subject>Antibacterial</subject><subject>Coating</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Silver</subject><subject>Sputtering</subject><subject>Staphylococcus aureus</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Zirconia</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBD6BLg0STMOOPOBHV6Tg-pJNojobGGpwx8iqJF9uLxL_Hpz1RUk3zvO_MPEK8RhgQcHx3HGoJgwSUA9gBtXoiDjjZuZdW4VNxANDQjzDDc_GilCNAI6U6iA_Xe439D_KVc6S1O3EOKW-0e-5S6L7H7NMeqfOJatx_li7t3X2stMfz1sXttNJey0vxLNBa-NXjvBLfPt7e33zu775--nJzfdd7Lcfae6lM4BEWJOJglsXK2RjiWbNm9HqxsyUtySBCmEDRSAuYYCZc9DQqq67E20vvKadfZy7VbbF4XtsRnM7FoUIzghn13FC8oD6nUjIHd8pxo_zHIbgHY-7omjH3YMyBdc1Yy7x5rKfiaQ25WYjlX1BanCaFsnHvLxy3X39Hzq74yM3YEjP76pYU_7PlL6-SgHg</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Huang, Heng-Li</creator><creator>Chang, Yin-Yu</creator><creator>Weng, Jui-Ching</creator><creator>Chen, Ya-Chi</creator><creator>Lai, Chih-Ho</creator><creator>Shieh, Tzong-Ming</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20130115</creationdate><title>Anti-bacterial performance of Zirconia coatings on Titanium implants</title><author>Huang, Heng-Li ; Chang, Yin-Yu ; Weng, Jui-Ching ; Chen, Ya-Chi ; Lai, Chih-Ho ; Shieh, Tzong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actinobacillus actinomycetemcomitans</topic><topic>Antibacterial</topic><topic>Coating</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Silver</topic><topic>Sputtering</topic><topic>Staphylococcus aureus</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Heng-Li</creatorcontrib><creatorcontrib>Chang, Yin-Yu</creatorcontrib><creatorcontrib>Weng, Jui-Ching</creatorcontrib><creatorcontrib>Chen, Ya-Chi</creatorcontrib><creatorcontrib>Lai, Chih-Ho</creatorcontrib><creatorcontrib>Shieh, Tzong-Ming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Heng-Li</au><au>Chang, Yin-Yu</au><au>Weng, Jui-Ching</au><au>Chen, Ya-Chi</au><au>Lai, Chih-Ho</au><au>Shieh, Tzong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-bacterial performance of Zirconia coatings on Titanium implants</atitle><jtitle>Thin solid films</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>528</volume><spage>151</spage><epage>156</epage><pages>151-156</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Bacterial adhesion and colonization are considered to play key roles in the pathogenesis of peri-implant disease, which is an inflammatory process leading the destruction of both soft and hard tissue around a Titanium (Ti) implant. The osseointegration of Ti implants is influenced by their composition and surface treatment. Zirconia (ZrO2) coatings have been shown to improve implant osseointegration in various biomedical fields, including orthopedic devices and dental implants. This study used a twin-gun magnetron sputtering system to deposit ZrO2–Sliver (Ag) and ZrO2–Copper (Cu) coatings on biograde pure-Ti implant materials. The effects of Ag and Cu on the antibacterial properties of the coated Ti samples were investigated using Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), which are found frequently in implant-associated infections. The in vitro antibacterial analyses employed a fluorescence staining method using SYTO9 and bacterial-viability tests on agar plates. Incorporating Ag and Cu into ZrO2 changed the structure of crystalline ZrO2, and the nanostructures of the resulting ZrO2–Ag and ZrO2–Cu coatings were found to be correlated with the antibacterial performance. The adherence of S. aureus and A. actinomycetemcomitans was less for ZrO2 samples with a small doping of Cu than for uncoated Ti. The ZrO2–Ag coating with an Ag content of 10.6at.%, which showed hydrophobicity, exhibited the lowest bacterial retention and viability of S. aureus and A. actinomycetemcomitans. The results suggest that ZrO2–Ag and ZrO2–Cu coatings improve the antibacterial performance relative to pure-Ti implant materials. ► ZrO2, ZrO2-Cu and ZrO2-Ag coatings were synthesized by magnetron sputtering. ► The ZrO2 and ZrO2-Cu with 5.1 at.% of Cu showed a monoclinic ZrO2. ► ZrO2-Ag showed a phase transition from monoclinic to tetragonal ZrO2. ► The ZrO2-Ag coating showed hydrophobic feature. ► Both the ZrO2-Ag and ZrO2-Cu showed excellent antibacterial performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.07.143</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-01, Vol.528, p.151-156
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1315605649
source ScienceDirect Journals
subjects Actinobacillus actinomycetemcomitans
Antibacterial
Coating
Condensed matter: structure, mechanical and thermal properties
Copper
Cross-disciplinary physics: materials science
rheology
Deposition by sputtering
Exact sciences and technology
Materials science
Mechanical and acoustical properties
Methods of deposition of films and coatings
film growth and epitaxy
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physical properties of thin films, nonelectronic
Physics
Silver
Sputtering
Staphylococcus aureus
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Zirconia
title Anti-bacterial performance of Zirconia coatings on Titanium implants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-bacterial%20performance%20of%20Zirconia%20coatings%20on%20Titanium%20implants&rft.jtitle=Thin%20solid%20films&rft.au=Huang,%20Heng-Li&rft.date=2013-01-15&rft.volume=528&rft.spage=151&rft.epage=156&rft.pages=151-156&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.07.143&rft_dat=%3Cproquest_cross%3E1315605649%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-c235fe60d1aaef5dd72955ae94e4e1c4d797a42a5110f803a6ad05f581d486373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315605649&rft_id=info:pmid/&rfr_iscdi=true