Loading…
Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa
AIM: To determine the geographical boundaries among cryptic lineages and examine the evolutionary drivers of cladogenesis within the Cape legless skink, Acontias meleagris species complex. LOCATION: Coastal plains and adjacent interior of the Eastern, Northern and Western Cape provinces of South Afr...
Saved in:
Published in: | Journal of biogeography 2013-03, Vol.40 (3), p.492-506 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3 |
container_end_page | 506 |
container_issue | 3 |
container_start_page | 492 |
container_title | Journal of biogeography |
container_volume | 40 |
creator | Engelbrecht, Hanlie M Niekerk, Adriaan Heideman, Neil J.L Daniels, Savel R Parmakelis, Aristeidis |
description | AIM: To determine the geographical boundaries among cryptic lineages and examine the evolutionary drivers of cladogenesis within the Cape legless skink, Acontias meleagris species complex. LOCATION: Coastal plains and adjacent interior of the Eastern, Northern and Western Cape provinces of South Africa. METHODS: A total of 231 specimens from 55 localities were collected from the entire known distribution range of the A. meleagris complex. Partial sequence data were collected from two mitochondrial DNA loci, 16S rRNA and cytochrome c oxidase subunit I (COI), and one protein‐coding nuclear DNA locus, exophilin 5 (EXPH5). Phylogenetic, phylogeographical and population genetic analyses, together with divergence time estimation, were conducted on the DNA sequence data to examine evolutionary history and diversification within the species complex. RESULTS: Marked genetic structure was observed within the A. meleagris complex, and five clades were retrieved, most of which were statistically well supported. These five clades were also evident within the haplotypic analyses and were characterized by demographic stability. Cladogenesis was induced during the Pliocene/Pleistocene epochs, most likely as a result of oscillations in climate and sea level, and Neogene geomorphic phenomena. The Breede River Valley is an area of high genetic diversity and is likely to have served as a refugium. MAIN CONCLUSIONS: Lineage diversification and the current biogeographical patterning reflect the impact of sea level oscillations on historical coastal habitat availability. Fine‐scale differences between co‐distributed subterranean and supraterranean herpetofaunal taxa can be attributed to differences in life‐history traits amongst different habitat types. Historical evolutionary drivers within this subterranean species complex are inferred and discussed. |
doi_str_mv | 10.1111/jbi.12024 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315610876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23354615</jstor_id><sourcerecordid>23354615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3</originalsourceid><addsrcrecordid>eNp1kt9u0zAUxiMEEqVwwQMgLCEkkJbVjv8kuSwdjKEJJm3TLi3XOencuXHwSWF7LZ4QtxlDQsI3PvL5nc8-53OWvWT0kKU1Wy_dIStoIR5lE8aVzAtV14-zCeVU5rQo6dPsGeKaUlpLLibZr4to7I3rVmS4BuI2vbEDCS058y5Y6GB25sHhsI8JgiEefoAnpmuI9W5jBmdJQOu8T2HokIRur2S9acIqFaHDnd7ubGF6SPUrD4gE06U3B2RuQzc4g2QDHswqJhp7sA6Q2LDpPdweENeR87Adrsm8jc6a59mT1niEF_f7NLv89PFi8Tk__XZ8spif5kaoUuRyWTWSl8bUom4KrlTBWGqZNw00nFZGgJV0WUleKytMu7SMWpCCtqLmHJTh0-zdqNvH8H0LOOiNQwup0w7CFjXjTCpGq1Il9M0_6DpsY5dep1lRSVlVvNhR70fKxoAYodV9TCOMd5pRvXNPJ_f03r3Evr1XNGiNb6PprMOHguQq5UJUiZuN3E_n4e7_gvrLh5M_yq_GinWyNf5V5FwKlSY0zfIxn2yH24e8iTdalbyU-urrsT6qj3h1xQu9SPzrkW9N0HsH9eV5QZnY_TGahs9_A6-9y4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285588326</pqid></control><display><type>article</type><title>Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Engelbrecht, Hanlie M ; Niekerk, Adriaan ; Heideman, Neil J.L ; Daniels, Savel R ; Parmakelis, Aristeidis</creator><contributor>Parmakelis, Aristeidis ; Parmakelis, Aristeidis</contributor><creatorcontrib>Engelbrecht, Hanlie M ; Niekerk, Adriaan ; Heideman, Neil J.L ; Daniels, Savel R ; Parmakelis, Aristeidis ; Parmakelis, Aristeidis ; Parmakelis, Aristeidis</creatorcontrib><description>AIM: To determine the geographical boundaries among cryptic lineages and examine the evolutionary drivers of cladogenesis within the Cape legless skink, Acontias meleagris species complex. LOCATION: Coastal plains and adjacent interior of the Eastern, Northern and Western Cape provinces of South Africa. METHODS: A total of 231 specimens from 55 localities were collected from the entire known distribution range of the A. meleagris complex. Partial sequence data were collected from two mitochondrial DNA loci, 16S rRNA and cytochrome c oxidase subunit I (COI), and one protein‐coding nuclear DNA locus, exophilin 5 (EXPH5). Phylogenetic, phylogeographical and population genetic analyses, together with divergence time estimation, were conducted on the DNA sequence data to examine evolutionary history and diversification within the species complex. RESULTS: Marked genetic structure was observed within the A. meleagris complex, and five clades were retrieved, most of which were statistically well supported. These five clades were also evident within the haplotypic analyses and were characterized by demographic stability. Cladogenesis was induced during the Pliocene/Pleistocene epochs, most likely as a result of oscillations in climate and sea level, and Neogene geomorphic phenomena. The Breede River Valley is an area of high genetic diversity and is likely to have served as a refugium. MAIN CONCLUSIONS: Lineage diversification and the current biogeographical patterning reflect the impact of sea level oscillations on historical coastal habitat availability. Fine‐scale differences between co‐distributed subterranean and supraterranean herpetofaunal taxa can be attributed to differences in life‐history traits amongst different habitat types. Historical evolutionary drivers within this subterranean species complex are inferred and discussed.</description><identifier>ISSN: 0305-0270</identifier><identifier>EISSN: 1365-2699</identifier><identifier>DOI: 10.1111/jbi.12024</identifier><identifier>CODEN: JBIODN</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acontia ; Acontiinae ; Amphibia. Reptilia ; Animal and plant ecology ; Animal, plant and microbial ecology ; Bays ; Biogeography ; Biological and medical sciences ; Biological taxonomies ; Cape region ; cladogenesis ; climate ; Coastal capes ; coastal plains ; cytochrome-c oxidase ; Datasets ; Deoxyribonucleic acid ; DNA ; Evolution ; Fundamental and applied biological sciences. Psychology ; General aspects ; genetic techniques and protocols ; genetic variation ; habitats ; herpetofauna ; loci ; Meleagris ; mitochondrial DNA ; nuclear genome ; nucleotide sequences ; Phylogenetics ; phylogeny ; Pleistocene ; Pliocene ; Population genetics ; ribosomal RNA ; rivers ; sea level ; Species ; Species histories: from pikas to tree skinks ; subterranean ; supraterranean ; Synecology ; Taxa ; Valleys ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>Journal of biogeography, 2013-03, Vol.40 (3), p.492-506</ispartof><rights>Copyright © 2013 Blackwell Publishing Ltd.</rights><rights>2012 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3</citedby><cites>FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23354615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23354615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26903448$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Parmakelis, Aristeidis</contributor><contributor>Parmakelis, Aristeidis</contributor><creatorcontrib>Engelbrecht, Hanlie M</creatorcontrib><creatorcontrib>Niekerk, Adriaan</creatorcontrib><creatorcontrib>Heideman, Neil J.L</creatorcontrib><creatorcontrib>Daniels, Savel R</creatorcontrib><creatorcontrib>Parmakelis, Aristeidis</creatorcontrib><title>Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa</title><title>Journal of biogeography</title><addtitle>J. Biogeogr</addtitle><description>AIM: To determine the geographical boundaries among cryptic lineages and examine the evolutionary drivers of cladogenesis within the Cape legless skink, Acontias meleagris species complex. LOCATION: Coastal plains and adjacent interior of the Eastern, Northern and Western Cape provinces of South Africa. METHODS: A total of 231 specimens from 55 localities were collected from the entire known distribution range of the A. meleagris complex. Partial sequence data were collected from two mitochondrial DNA loci, 16S rRNA and cytochrome c oxidase subunit I (COI), and one protein‐coding nuclear DNA locus, exophilin 5 (EXPH5). Phylogenetic, phylogeographical and population genetic analyses, together with divergence time estimation, were conducted on the DNA sequence data to examine evolutionary history and diversification within the species complex. RESULTS: Marked genetic structure was observed within the A. meleagris complex, and five clades were retrieved, most of which were statistically well supported. These five clades were also evident within the haplotypic analyses and were characterized by demographic stability. Cladogenesis was induced during the Pliocene/Pleistocene epochs, most likely as a result of oscillations in climate and sea level, and Neogene geomorphic phenomena. The Breede River Valley is an area of high genetic diversity and is likely to have served as a refugium. MAIN CONCLUSIONS: Lineage diversification and the current biogeographical patterning reflect the impact of sea level oscillations on historical coastal habitat availability. Fine‐scale differences between co‐distributed subterranean and supraterranean herpetofaunal taxa can be attributed to differences in life‐history traits amongst different habitat types. Historical evolutionary drivers within this subterranean species complex are inferred and discussed.</description><subject>Acontia</subject><subject>Acontiinae</subject><subject>Amphibia. Reptilia</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Bays</subject><subject>Biogeography</subject><subject>Biological and medical sciences</subject><subject>Biological taxonomies</subject><subject>Cape region</subject><subject>cladogenesis</subject><subject>climate</subject><subject>Coastal capes</subject><subject>coastal plains</subject><subject>cytochrome-c oxidase</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>genetic techniques and protocols</subject><subject>genetic variation</subject><subject>habitats</subject><subject>herpetofauna</subject><subject>loci</subject><subject>Meleagris</subject><subject>mitochondrial DNA</subject><subject>nuclear genome</subject><subject>nucleotide sequences</subject><subject>Phylogenetics</subject><subject>phylogeny</subject><subject>Pleistocene</subject><subject>Pliocene</subject><subject>Population genetics</subject><subject>ribosomal RNA</subject><subject>rivers</subject><subject>sea level</subject><subject>Species</subject><subject>Species histories: from pikas to tree skinks</subject><subject>subterranean</subject><subject>supraterranean</subject><subject>Synecology</subject><subject>Taxa</subject><subject>Valleys</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0305-0270</issn><issn>1365-2699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kt9u0zAUxiMEEqVwwQMgLCEkkJbVjv8kuSwdjKEJJm3TLi3XOencuXHwSWF7LZ4QtxlDQsI3PvL5nc8-53OWvWT0kKU1Wy_dIStoIR5lE8aVzAtV14-zCeVU5rQo6dPsGeKaUlpLLibZr4to7I3rVmS4BuI2vbEDCS058y5Y6GB25sHhsI8JgiEefoAnpmuI9W5jBmdJQOu8T2HokIRur2S9acIqFaHDnd7ubGF6SPUrD4gE06U3B2RuQzc4g2QDHswqJhp7sA6Q2LDpPdweENeR87Adrsm8jc6a59mT1niEF_f7NLv89PFi8Tk__XZ8spif5kaoUuRyWTWSl8bUom4KrlTBWGqZNw00nFZGgJV0WUleKytMu7SMWpCCtqLmHJTh0-zdqNvH8H0LOOiNQwup0w7CFjXjTCpGq1Il9M0_6DpsY5dep1lRSVlVvNhR70fKxoAYodV9TCOMd5pRvXNPJ_f03r3Evr1XNGiNb6PprMOHguQq5UJUiZuN3E_n4e7_gvrLh5M_yq_GinWyNf5V5FwKlSY0zfIxn2yH24e8iTdalbyU-urrsT6qj3h1xQu9SPzrkW9N0HsH9eV5QZnY_TGahs9_A6-9y4M</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Engelbrecht, Hanlie M</creator><creator>Niekerk, Adriaan</creator><creator>Heideman, Neil J.L</creator><creator>Daniels, Savel R</creator><creator>Parmakelis, Aristeidis</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>201303</creationdate><title>Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa</title><author>Engelbrecht, Hanlie M ; Niekerk, Adriaan ; Heideman, Neil J.L ; Daniels, Savel R ; Parmakelis, Aristeidis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acontia</topic><topic>Acontiinae</topic><topic>Amphibia. Reptilia</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Bays</topic><topic>Biogeography</topic><topic>Biological and medical sciences</topic><topic>Biological taxonomies</topic><topic>Cape region</topic><topic>cladogenesis</topic><topic>climate</topic><topic>Coastal capes</topic><topic>coastal plains</topic><topic>cytochrome-c oxidase</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>genetic techniques and protocols</topic><topic>genetic variation</topic><topic>habitats</topic><topic>herpetofauna</topic><topic>loci</topic><topic>Meleagris</topic><topic>mitochondrial DNA</topic><topic>nuclear genome</topic><topic>nucleotide sequences</topic><topic>Phylogenetics</topic><topic>phylogeny</topic><topic>Pleistocene</topic><topic>Pliocene</topic><topic>Population genetics</topic><topic>ribosomal RNA</topic><topic>rivers</topic><topic>sea level</topic><topic>Species</topic><topic>Species histories: from pikas to tree skinks</topic><topic>subterranean</topic><topic>supraterranean</topic><topic>Synecology</topic><topic>Taxa</topic><topic>Valleys</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelbrecht, Hanlie M</creatorcontrib><creatorcontrib>Niekerk, Adriaan</creatorcontrib><creatorcontrib>Heideman, Neil J.L</creatorcontrib><creatorcontrib>Daniels, Savel R</creatorcontrib><creatorcontrib>Parmakelis, Aristeidis</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Journal of biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelbrecht, Hanlie M</au><au>Niekerk, Adriaan</au><au>Heideman, Neil J.L</au><au>Daniels, Savel R</au><au>Parmakelis, Aristeidis</au><au>Parmakelis, Aristeidis</au><au>Parmakelis, Aristeidis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa</atitle><jtitle>Journal of biogeography</jtitle><addtitle>J. Biogeogr</addtitle><date>2013-03</date><risdate>2013</risdate><volume>40</volume><issue>3</issue><spage>492</spage><epage>506</epage><pages>492-506</pages><issn>0305-0270</issn><eissn>1365-2699</eissn><coden>JBIODN</coden><abstract>AIM: To determine the geographical boundaries among cryptic lineages and examine the evolutionary drivers of cladogenesis within the Cape legless skink, Acontias meleagris species complex. LOCATION: Coastal plains and adjacent interior of the Eastern, Northern and Western Cape provinces of South Africa. METHODS: A total of 231 specimens from 55 localities were collected from the entire known distribution range of the A. meleagris complex. Partial sequence data were collected from two mitochondrial DNA loci, 16S rRNA and cytochrome c oxidase subunit I (COI), and one protein‐coding nuclear DNA locus, exophilin 5 (EXPH5). Phylogenetic, phylogeographical and population genetic analyses, together with divergence time estimation, were conducted on the DNA sequence data to examine evolutionary history and diversification within the species complex. RESULTS: Marked genetic structure was observed within the A. meleagris complex, and five clades were retrieved, most of which were statistically well supported. These five clades were also evident within the haplotypic analyses and were characterized by demographic stability. Cladogenesis was induced during the Pliocene/Pleistocene epochs, most likely as a result of oscillations in climate and sea level, and Neogene geomorphic phenomena. The Breede River Valley is an area of high genetic diversity and is likely to have served as a refugium. MAIN CONCLUSIONS: Lineage diversification and the current biogeographical patterning reflect the impact of sea level oscillations on historical coastal habitat availability. Fine‐scale differences between co‐distributed subterranean and supraterranean herpetofaunal taxa can be attributed to differences in life‐history traits amongst different habitat types. Historical evolutionary drivers within this subterranean species complex are inferred and discussed.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jbi.12024</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0270 |
ispartof | Journal of biogeography, 2013-03, Vol.40 (3), p.492-506 |
issn | 0305-0270 1365-2699 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315610876 |
source | Wiley; JSTOR Archival Journals and Primary Sources Collection |
subjects | Acontia Acontiinae Amphibia. Reptilia Animal and plant ecology Animal, plant and microbial ecology Bays Biogeography Biological and medical sciences Biological taxonomies Cape region cladogenesis climate Coastal capes coastal plains cytochrome-c oxidase Datasets Deoxyribonucleic acid DNA Evolution Fundamental and applied biological sciences. Psychology General aspects genetic techniques and protocols genetic variation habitats herpetofauna loci Meleagris mitochondrial DNA nuclear genome nucleotide sequences Phylogenetics phylogeny Pleistocene Pliocene Population genetics ribosomal RNA rivers sea level Species Species histories: from pikas to tree skinks subterranean supraterranean Synecology Taxa Valleys Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Tracking the impact of Pliocene/Pleistocene sea level and climatic oscillations on the cladogenesis of the Cape legless skink, Acontias meleagris species complex, in South Africa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20impact%20of%20Pliocene/Pleistocene%20sea%20level%20and%20climatic%20oscillations%20on%20the%20cladogenesis%20of%20the%20Cape%20legless%20skink,%20Acontias%20meleagris%20species%20complex,%20in%20South%20Africa&rft.jtitle=Journal%20of%20biogeography&rft.au=Engelbrecht,%20Hanlie%20M&rft.date=2013-03&rft.volume=40&rft.issue=3&rft.spage=492&rft.epage=506&rft.pages=492-506&rft.issn=0305-0270&rft.eissn=1365-2699&rft.coden=JBIODN&rft_id=info:doi/10.1111/jbi.12024&rft_dat=%3Cjstor_proqu%3E23354615%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4674-5b8d537aa949d23662115343dded308a4ec50b85396c4afbc10ce540f4933e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285588326&rft_id=info:pmid/&rft_jstor_id=23354615&rfr_iscdi=true |