Loading…

Probucol Affords Neuroprotection in a 6-OHDA Mouse Model of Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons. Although the etiology of the majority of human PD cases is unknown, experimental evidence points to oxidative stress as an early and causal event. Probucol is a lipid-low...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research 2013-03, Vol.38 (3), p.660-668
Main Authors: Ribeiro, Renata Pietsch, Moreira, Eduardo Luiz Gasnhar, Santos, Danúbia Bonfanti, Colle, Dirleise, dos Santos, Alessandra Antunes, Peres, Kaite Cristiane, Figueiredo, Claudia Pinto, Farina, Marcelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons. Although the etiology of the majority of human PD cases is unknown, experimental evidence points to oxidative stress as an early and causal event. Probucol is a lipid-lowering phenolic compound with anti-inflammatory and antioxidant properties that has been recently reported as protective in neurotoxicity and neurodegeneration models. This study was designed to investigate the effects of probucol on the vulnerability of striatal dopaminergic neurons to oxidative stress in a PD in vivo model. Swiss mice were treated with probucol during 21 days (11.8 mg/kg; oral route). Two weeks after the beginning of treatment, mice received a single intracerebroventricular (i.c.v.) infusion of 6-hydroxydopamine (6-OHDA). On the 21st day, locomotor performance, striatal oxidative stress-related parameters, and striatal tyrosine hydroxylase and synaptophysin levels, were measured as outcomes of toxicity. 6-OHDA-infused mice showed hyperlocomotion and a significant decrease in striatal tyrosine hydroxylase (TH) and synaptophysin levels. In addition, 6-OHDA-infused mice showed reduced superoxide dismutase activity and increased lipid peroxidation and catalase activity in the striatum. Notably, probucol protected against 6-OHDA-induced hyperlocomotion and striatal lipid peroxidation, catalase upregulation and decrease of TH levels. Overall, the present results show that probucol protects against 6-OHDA-induced toxicity in mice. These findings may render probucol as a promising molecule for further pharmacological studies on the search for disease-modifying treatment in PD.
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-012-0965-0