Loading…
The Gyra washover fan in the Lefkada Lagoon, NW Greece—possible evidence of the 365 AD Crete earthquake and tsunami
Coastal geomorphological and geological archives store valuable information about the geodynamic evolution of coastal areas and the contributing geomorphodynamic processes. The coastal geomorphology of the Lefkada– Preveza coastal zone, NW Greece, holds evidence for the influence of both gradual, lo...
Saved in:
Published in: | Earth, planets and space planets and space, 2012-10, Vol.64 (10), p.859-874 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coastal geomorphological and geological archives store valuable information about the geodynamic evolution of coastal areas and the contributing geomorphodynamic processes. The coastal geomorphology of the Lefkada– Preveza coastal zone, NW Greece, holds evidence for the influence of both gradual, low-energy and episodic, high-energy coastal processes. Situated close to the Hellenic Arc and the Cefalonia transform fault, the area belongs to one of the seismically most active regions in the Mediterranean. Thus, tsunami events are assumed to have contributed to the coastal evolution in the study area according to tsunami catalogues and field evidence from previous investigations. The northern part of the Lefkada Lagoon, separated from the Ionian Sea by an extensive barrier beach system, is characterized by a number of fan-like washover structures, formed by different washover generations. In this paper, we present detailed geomorphological, sedimentological, geochemical and foraminiferal investigations on the most prominent fan structure, the Gyra fan, based on terrestrial and lagoonal sediment cores. The Gyra fan consists of a coarse-grained sequence of fully marine origin on top of lagoonal mud and a palaeosol, respectively. The sequence shows numerous characteristics of extreme wave deposits. Due to the dimension and morphology of the fan, the existence of up to four consistent and correlative stratigraphic subunits, their landward thinning and their comparable sedimentary characteristics, we argue that a tsunami event induced the formation of the Gyra fan, comprising at least four major inundation impulses. According to radiocarbon dates, this geomorphological structure was most likely formed by teletsunami effects triggered by the 365 AD earthquake off western Crete. |
---|---|
ISSN: | 1343-8832 1880-5981 |
DOI: | 10.5047/eps.2012.03.007 |