Loading…
Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts
An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training...
Saved in:
Published in: | Chemical engineering & technology 2011-03, Vol.34 (3), p.459-464 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33 |
container_end_page | 464 |
container_issue | 3 |
container_start_page | 459 |
container_title | Chemical engineering & technology |
container_volume | 34 |
creator | Mehrkesh, A. H. Hajimirzaee, S. Hatamipour, M. S. Tavakoli, T. |
description | An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters.
It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company. |
doi_str_mv | 10.1002/ceat.201000361 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315614447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315614447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</originalsourceid><addsrcrecordid>eNqFkDFv2zAQhYmgBeKmWTNzKdBFLo-UKGl0Xccp4CSLi47EmTq2bGQxJSkk_vdV6sDo1undHb73DniMXYGYgxDykyXMcymmWSgNZ2wGlYSiBFm9YTPRKlHUFehz9i6lXxMD0zJjuIjZO2899vyOxvhX8lOID9yFyG9DR70ffvD8k_jqOUe02YeBB8cXMewxe8tvDl0MFuMuDIm76co34474ve_5cszpPXvrsE90-aoX7Nv1aru8KTb366_LxaawpayhQCgb1C1pK6rS1nWnQCvaUdu0aiexsSQ7i-SaRmgCcK1qVYOSUJdKuE6pC_bxmPsYw--RUjZ7nyz1PQ4UxmRAQaWhLMt6QudH1MaQUiRnHqPfYzwYEOalS_PSpTl1ORk-vGZjsti7iIP16eSSqpWybPTEtUfuyfd0-E-qWa4W239_FEevT5meT16MD0bXqq7M97u1-SI3sP68VeZW_QFQs5RD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315614447</pqid></control><display><type>article</type><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><source>Wiley</source><creator>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</creator><creatorcontrib>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</creatorcontrib><description>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters.
It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201000361</identifier><identifier>CODEN: CETEER</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Artificial neural network ; Chemical engineering ; Exact sciences and technology ; Liquid-liquid extraction ; Lubricating base oil ; Rotating disc contactor</subject><ispartof>Chemical engineering & technology, 2011-03, Vol.34 (3), p.459-464</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</citedby><cites>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23922486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrkesh, A. H.</creatorcontrib><creatorcontrib>Hajimirzaee, S.</creatorcontrib><creatorcontrib>Hatamipour, M. S.</creatorcontrib><creatorcontrib>Tavakoli, T.</creatorcontrib><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><title>Chemical engineering & technology</title><addtitle>Chem. Eng. Technol</addtitle><description>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters.
It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</description><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid extraction</subject><subject>Lubricating base oil</subject><subject>Rotating disc contactor</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkDFv2zAQhYmgBeKmWTNzKdBFLo-UKGl0Xccp4CSLi47EmTq2bGQxJSkk_vdV6sDo1undHb73DniMXYGYgxDykyXMcymmWSgNZ2wGlYSiBFm9YTPRKlHUFehz9i6lXxMD0zJjuIjZO2899vyOxvhX8lOID9yFyG9DR70ffvD8k_jqOUe02YeBB8cXMewxe8tvDl0MFuMuDIm76co34474ve_5cszpPXvrsE90-aoX7Nv1aru8KTb366_LxaawpayhQCgb1C1pK6rS1nWnQCvaUdu0aiexsSQ7i-SaRmgCcK1qVYOSUJdKuE6pC_bxmPsYw--RUjZ7nyz1PQ4UxmRAQaWhLMt6QudH1MaQUiRnHqPfYzwYEOalS_PSpTl1ORk-vGZjsti7iIP16eSSqpWybPTEtUfuyfd0-E-qWa4W239_FEevT5meT16MD0bXqq7M97u1-SI3sP68VeZW_QFQs5RD</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Mehrkesh, A. H.</creator><creator>Hajimirzaee, S.</creator><creator>Hatamipour, M. S.</creator><creator>Tavakoli, T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201103</creationdate><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><author>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid extraction</topic><topic>Lubricating base oil</topic><topic>Rotating disc contactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrkesh, A. H.</creatorcontrib><creatorcontrib>Hajimirzaee, S.</creatorcontrib><creatorcontrib>Hatamipour, M. S.</creatorcontrib><creatorcontrib>Tavakoli, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrkesh, A. H.</au><au>Hajimirzaee, S.</au><au>Hatamipour, M. S.</au><au>Tavakoli, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</atitle><jtitle>Chemical engineering & technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>34</volume><issue>3</issue><spage>459</spage><epage>464</epage><pages>459-464</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><coden>CETEER</coden><abstract>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters.
It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201000361</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2011-03, Vol.34 (3), p.459-464 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315614447 |
source | Wiley |
subjects | Applied sciences Artificial neural network Chemical engineering Exact sciences and technology Liquid-liquid extraction Lubricating base oil Rotating disc contactor |
title | Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20for%20Modeling%20the%20Extraction%20of%20Aromatic%20Hydrocarbons%20from%20Lube%20Oil%20Cuts&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Mehrkesh,%20A.%20H.&rft.date=2011-03&rft.volume=34&rft.issue=3&rft.spage=459&rft.epage=464&rft.pages=459-464&rft.issn=0930-7516&rft.eissn=1521-4125&rft.coden=CETEER&rft_id=info:doi/10.1002/ceat.201000361&rft_dat=%3Cproquest_cross%3E1315614447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315614447&rft_id=info:pmid/&rfr_iscdi=true |