Loading…

Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts

An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology 2011-03, Vol.34 (3), p.459-464
Main Authors: Mehrkesh, A. H., Hajimirzaee, S., Hatamipour, M. S., Tavakoli, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33
cites cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33
container_end_page 464
container_issue 3
container_start_page 459
container_title Chemical engineering & technology
container_volume 34
creator Mehrkesh, A. H.
Hajimirzaee, S.
Hatamipour, M. S.
Tavakoli, T.
description An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.
doi_str_mv 10.1002/ceat.201000361
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315614447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315614447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</originalsourceid><addsrcrecordid>eNqFkDFv2zAQhYmgBeKmWTNzKdBFLo-UKGl0Xccp4CSLi47EmTq2bGQxJSkk_vdV6sDo1undHb73DniMXYGYgxDykyXMcymmWSgNZ2wGlYSiBFm9YTPRKlHUFehz9i6lXxMD0zJjuIjZO2899vyOxvhX8lOID9yFyG9DR70ffvD8k_jqOUe02YeBB8cXMewxe8tvDl0MFuMuDIm76co34474ve_5cszpPXvrsE90-aoX7Nv1aru8KTb366_LxaawpayhQCgb1C1pK6rS1nWnQCvaUdu0aiexsSQ7i-SaRmgCcK1qVYOSUJdKuE6pC_bxmPsYw--RUjZ7nyz1PQ4UxmRAQaWhLMt6QudH1MaQUiRnHqPfYzwYEOalS_PSpTl1ORk-vGZjsti7iIP16eSSqpWybPTEtUfuyfd0-E-qWa4W239_FEevT5meT16MD0bXqq7M97u1-SI3sP68VeZW_QFQs5RD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315614447</pqid></control><display><type>article</type><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><source>Wiley</source><creator>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</creator><creatorcontrib>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</creatorcontrib><description>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201000361</identifier><identifier>CODEN: CETEER</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Artificial neural network ; Chemical engineering ; Exact sciences and technology ; Liquid-liquid extraction ; Lubricating base oil ; Rotating disc contactor</subject><ispartof>Chemical engineering &amp; technology, 2011-03, Vol.34 (3), p.459-464</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</citedby><cites>FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23922486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrkesh, A. H.</creatorcontrib><creatorcontrib>Hajimirzaee, S.</creatorcontrib><creatorcontrib>Hatamipour, M. S.</creatorcontrib><creatorcontrib>Tavakoli, T.</creatorcontrib><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</description><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid extraction</subject><subject>Lubricating base oil</subject><subject>Rotating disc contactor</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkDFv2zAQhYmgBeKmWTNzKdBFLo-UKGl0Xccp4CSLi47EmTq2bGQxJSkk_vdV6sDo1undHb73DniMXYGYgxDykyXMcymmWSgNZ2wGlYSiBFm9YTPRKlHUFehz9i6lXxMD0zJjuIjZO2899vyOxvhX8lOID9yFyG9DR70ffvD8k_jqOUe02YeBB8cXMewxe8tvDl0MFuMuDIm76co34474ve_5cszpPXvrsE90-aoX7Nv1aru8KTb366_LxaawpayhQCgb1C1pK6rS1nWnQCvaUdu0aiexsSQ7i-SaRmgCcK1qVYOSUJdKuE6pC_bxmPsYw--RUjZ7nyz1PQ4UxmRAQaWhLMt6QudH1MaQUiRnHqPfYzwYEOalS_PSpTl1ORk-vGZjsti7iIP16eSSqpWybPTEtUfuyfd0-E-qWa4W239_FEevT5meT16MD0bXqq7M97u1-SI3sP68VeZW_QFQs5RD</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Mehrkesh, A. H.</creator><creator>Hajimirzaee, S.</creator><creator>Hatamipour, M. S.</creator><creator>Tavakoli, T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201103</creationdate><title>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</title><author>Mehrkesh, A. H. ; Hajimirzaee, S. ; Hatamipour, M. S. ; Tavakoli, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid extraction</topic><topic>Lubricating base oil</topic><topic>Rotating disc contactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrkesh, A. H.</creatorcontrib><creatorcontrib>Hajimirzaee, S.</creatorcontrib><creatorcontrib>Hatamipour, M. S.</creatorcontrib><creatorcontrib>Tavakoli, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrkesh, A. H.</au><au>Hajimirzaee, S.</au><au>Hatamipour, M. S.</au><au>Tavakoli, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>34</volume><issue>3</issue><spage>459</spage><epage>464</epage><pages>459-464</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><coden>CETEER</coden><abstract>An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed‐forward multi‐layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. It is possible to conduct a parametric study of the complex lubricating oil extraction process in an industrial rotating disc contactor column using the artificial neural network (ANN) procedure. The accuracy of the created ANN model was checked by randomly selected data among the archived operational data set of an industrial lubricating oil producer company.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201000361</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2011-03, Vol.34 (3), p.459-464
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1315614447
source Wiley
subjects Applied sciences
Artificial neural network
Chemical engineering
Exact sciences and technology
Liquid-liquid extraction
Lubricating base oil
Rotating disc contactor
title Artificial Neural Network for Modeling the Extraction of Aromatic Hydrocarbons from Lube Oil Cuts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20for%20Modeling%20the%20Extraction%20of%20Aromatic%20Hydrocarbons%20from%20Lube%20Oil%20Cuts&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Mehrkesh,%20A.%20H.&rft.date=2011-03&rft.volume=34&rft.issue=3&rft.spage=459&rft.epage=464&rft.pages=459-464&rft.issn=0930-7516&rft.eissn=1521-4125&rft.coden=CETEER&rft_id=info:doi/10.1002/ceat.201000361&rft_dat=%3Cproquest_cross%3E1315614447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4271-a148a69e6c054c77d3163ebe9893b2a8ce2dcaef8806e11f93938a2ea6430fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315614447&rft_id=info:pmid/&rfr_iscdi=true