Loading…

Potential response to climate change of a semi-arid coastal ecosystem in eastern Mediterranean

Eastern Mediterranean gulfs, adjacent to small semi-arid watersheds are particularly susceptible to climate changes. In this study, an analysis was performed for air temperature and rainfall during 1955–2010 over a coastal ecosystem in NE Aegean, and potential effects of recent changes on the physic...

Full description

Saved in:
Bibliographic Details
Published in:Hydrobiologia 2013-03, Vol.705 (1), p.87-99
Main Authors: Spyropoulou, Alexandra, Spatharis, Sofie, Papantoniou, Georgia, Tsirtsis, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eastern Mediterranean gulfs, adjacent to small semi-arid watersheds are particularly susceptible to climate changes. In this study, an analysis was performed for air temperature and rainfall during 1955–2010 over a coastal ecosystem in NE Aegean, and potential effects of recent changes on the physical setting and ecological status of the marine system were studied. A trend toward drier conditions was revealed, and in order to assess possible effects on the surrounding basin, a watershed model was applied. In addition, the hydrology and ecology of the marine ecosystem were studied using a water budget model along with available field data. Based on local climatological data, dryness may lead to a decrease of one to two orders of magnitude in the amount of runoff during a dry annual cycle, resulting to a fivefold increase in the residence time of the marine system. High residence time associated with terrestrial nutrient inputs and strong stratification result to phytoplankton blooms during winter, including harmful algal blooms. Integrated approaches, modeling both the hydrology and ecology of watersheds and adjacent water bodies, are essential toward forecasting, understanding and management of potential alterations in functioning of coastal ecosystems due to recent climate changes.
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-012-1384-6