Loading…
Kinetic and Physiological Evaluation of Ammonium and Nitrite Oxidation Processes in Presence of 2-Chlorophenol
The effect of 2-chlorophenol (2-CP) on ammonium and nitrite-oxidizing processes was kinetically evaluated in batch cultures with nitrifying sludge at steady state. Assays with ammonium or nitrite as energy source and 2.5, 5.0, or 10.0 mg 2-CP-C/l were conducted. Control assays without 2-CP were also...
Saved in:
Published in: | Applied biochemistry and biotechnology 2013-02, Vol.169 (3), p.990-1000 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of 2-chlorophenol (2-CP) on ammonium and nitrite-oxidizing processes was kinetically evaluated in batch cultures with nitrifying sludge at steady state. Assays with ammonium or nitrite as energy source and 2.5, 5.0, or 10.0 mg 2-CP-C/l were conducted. Control assays without 2-CP were also performed. Ammonium-oxidizing activity was completely inhibited at the different 2-CP concentrations, whereas nitrite-oxidizing activity was present as nitrite was completely consumed and converted to nitrate irrespectively of 2-CP concentration. In the presence of 2.5 and 5.0 mg 2-CP-C/l, no significant effect on specific rates of nitrite consumption and nitrate production was observed, but a significant decrease on these parameters was observed at 10.0 mg 2-CP-C/l. The nitrifying sludge previously exposed to 2-CP was unable to completely recover its ammonium and nitrite oxidation capacity. Nevertheless, complete 2-CP consumption was achieved in all assays. The effect of 2-CP on ammonium oxidation was observed at kinetic and metabolic pathway level, whereas the effect on nitrite oxidation was observed only at kinetic level. The results obtained in this work evidenced that in order to achieve a successful nitrification process the presence in wastewater of even 2.5 mg 2-CP-C/l should be avoided. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-012-0065-2 |