Loading…

Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada

Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest mana...

Full description

Saved in:
Bibliographic Details
Published in:Natural hazards (Dordrecht) 2013-03, Vol.66 (2), p.439-462
Main Authors: Parisien, Marc-André, Walker, Gregg R., Little, John M., Simpson, Brian N., Wang, Xianli, Perrakis, Daniel D. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543
cites cdi_FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543
container_end_page 462
container_issue 2
container_start_page 439
container_title Natural hazards (Dordrecht)
container_volume 66
creator Parisien, Marc-André
Walker, Gregg R.
Little, John M.
Simpson, Brian N.
Wang, Xianli
Perrakis, Daniel D. B.
description Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest managers to estimate spatial burn probabilities. This study describes a methodology for selecting input data and model parameters when creating burn probability maps in difficult-to-model areas and reports the results of a case study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to having particularly mountainous topography, the study area is covered by vegetation types that are poorly represented in fire behavior systems, even though these vegetation types have experienced considerable (if highly irregular) fire activity in premodern times (before 1920). Parameterization of the fire environment for simulation modeling was accomplished by combining various types of fire information (e.g., fire history studies, reconstructed fire climatologies), new technologies (high-resolution remotely sensed data, wind flow modeling), and—a must in data-limited areas—ample expert advice. In this study, we made extensive use of personal accounts from experienced fire behavior officers for the creation of model inputs. Despite difficulties in validating outputs of burn probability models, the multisource model-building approach described here provides a conservative, yet informative, means of estimating the likelihood of fire. Due to the data-intensive nature of the modeling and paucity of input data, an argument is made that modelers must focus on the inputs that are the most influential for their study area.
doi_str_mv 10.1007/s11069-012-0495-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315620698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473395330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543</originalsourceid><addsrcrecordid>eNp1kVGL1TAQhYsoeF39Ab4FRPDB6iRpmtQ3KborrPii4FuYNtO7WdrkmrSr-zP8x-Z6FwXBpwzkm8Occ6rqKYdXHEC_zpxD29XARQ1Np2pzr9pxpWUNpoH71Q46wWuQ8PVh9SjnawDOW9Htqp99DNk7Srj6MrEpJrZER7MPezZsKbBDigMOfvbrLcMxxZzZjMHlEQ-U2Xe_XrG8Eh0YhRufYlgorDizfULny5jfMAyMfuBymIlNKS5svSLWx3lbBo_sY9wK70N-yXoM6PBx9WDCOdOTu_es-vL-3ef-or78dP6hf3tZj43Qa93o0TgFklPxS10HOGjHlXLKNK0RxugWgaglKSZNWnCDSjhwJMEVrpFn1YuTbjH4baO82sXnkeZijuKWLZdctaKEagr67B_0OpZoynVWNFrKTkkJheIn6ndIiSZ7SH7BdGs52GNJ9lSSLSXZY0n2qPz8ThlLoPOUMIw-_1kUWhndCVU4ceJy-Qp7Sn8v-L_4L3uBo04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473395330</pqid></control><display><type>article</type><title>Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada</title><source>Springer Link</source><creator>Parisien, Marc-André ; Walker, Gregg R. ; Little, John M. ; Simpson, Brian N. ; Wang, Xianli ; Perrakis, Daniel D. B.</creator><creatorcontrib>Parisien, Marc-André ; Walker, Gregg R. ; Little, John M. ; Simpson, Brian N. ; Wang, Xianli ; Perrakis, Daniel D. B.</creatorcontrib><description>Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest managers to estimate spatial burn probabilities. This study describes a methodology for selecting input data and model parameters when creating burn probability maps in difficult-to-model areas and reports the results of a case study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to having particularly mountainous topography, the study area is covered by vegetation types that are poorly represented in fire behavior systems, even though these vegetation types have experienced considerable (if highly irregular) fire activity in premodern times (before 1920). Parameterization of the fire environment for simulation modeling was accomplished by combining various types of fire information (e.g., fire history studies, reconstructed fire climatologies), new technologies (high-resolution remotely sensed data, wind flow modeling), and—a must in data-limited areas—ample expert advice. In this study, we made extensive use of personal accounts from experienced fire behavior officers for the creation of model inputs. Despite difficulties in validating outputs of burn probability models, the multisource model-building approach described here provides a conservative, yet informative, means of estimating the likelihood of fire. Due to the data-intensive nature of the modeling and paucity of input data, an argument is made that modelers must focus on the inputs that are the most influential for their study area.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-012-0495-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Data ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environment models ; Environmental gradient ; Environmental Management ; Estimation ; Exact sciences and technology ; Fire behavior ; Fires ; Forest management ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Land management ; Landscape ; Modelling ; Mountains ; Natural Hazards ; Natural hazards: prediction, damages, etc ; New technology ; Original Paper ; Parameterization ; Probability ; Probability theory ; Remote sensing ; Simulation ; Vegetation ; Wind flow</subject><ispartof>Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.439-462</ispartof><rights>Her Majesty the Queen in Right of Canada 2012</rights><rights>2014 INIST-CNRS</rights><rights>Her Majesty the Queen in Right of Canada 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543</citedby><cites>FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27587925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parisien, Marc-André</creatorcontrib><creatorcontrib>Walker, Gregg R.</creatorcontrib><creatorcontrib>Little, John M.</creatorcontrib><creatorcontrib>Simpson, Brian N.</creatorcontrib><creatorcontrib>Wang, Xianli</creatorcontrib><creatorcontrib>Perrakis, Daniel D. B.</creatorcontrib><title>Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest managers to estimate spatial burn probabilities. This study describes a methodology for selecting input data and model parameters when creating burn probability maps in difficult-to-model areas and reports the results of a case study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to having particularly mountainous topography, the study area is covered by vegetation types that are poorly represented in fire behavior systems, even though these vegetation types have experienced considerable (if highly irregular) fire activity in premodern times (before 1920). Parameterization of the fire environment for simulation modeling was accomplished by combining various types of fire information (e.g., fire history studies, reconstructed fire climatologies), new technologies (high-resolution remotely sensed data, wind flow modeling), and—a must in data-limited areas—ample expert advice. In this study, we made extensive use of personal accounts from experienced fire behavior officers for the creation of model inputs. Despite difficulties in validating outputs of burn probability models, the multisource model-building approach described here provides a conservative, yet informative, means of estimating the likelihood of fire. Due to the data-intensive nature of the modeling and paucity of input data, an argument is made that modelers must focus on the inputs that are the most influential for their study area.</description><subject>Civil Engineering</subject><subject>Data</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environment models</subject><subject>Environmental gradient</subject><subject>Environmental Management</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fire behavior</subject><subject>Fires</subject><subject>Forest management</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Land management</subject><subject>Landscape</subject><subject>Modelling</subject><subject>Mountains</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>New technology</subject><subject>Original Paper</subject><subject>Parameterization</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Remote sensing</subject><subject>Simulation</subject><subject>Vegetation</subject><subject>Wind flow</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kVGL1TAQhYsoeF39Ab4FRPDB6iRpmtQ3KborrPii4FuYNtO7WdrkmrSr-zP8x-Z6FwXBpwzkm8Occ6rqKYdXHEC_zpxD29XARQ1Np2pzr9pxpWUNpoH71Q46wWuQ8PVh9SjnawDOW9Htqp99DNk7Srj6MrEpJrZER7MPezZsKbBDigMOfvbrLcMxxZzZjMHlEQ-U2Xe_XrG8Eh0YhRufYlgorDizfULny5jfMAyMfuBymIlNKS5svSLWx3lbBo_sY9wK70N-yXoM6PBx9WDCOdOTu_es-vL-3ef-or78dP6hf3tZj43Qa93o0TgFklPxS10HOGjHlXLKNK0RxugWgaglKSZNWnCDSjhwJMEVrpFn1YuTbjH4baO82sXnkeZijuKWLZdctaKEagr67B_0OpZoynVWNFrKTkkJheIn6ndIiSZ7SH7BdGs52GNJ9lSSLSXZY0n2qPz8ThlLoPOUMIw-_1kUWhndCVU4ceJy-Qp7Sn8v-L_4L3uBo04</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Parisien, Marc-André</creator><creator>Walker, Gregg R.</creator><creator>Little, John M.</creator><creator>Simpson, Brian N.</creator><creator>Wang, Xianli</creator><creator>Perrakis, Daniel D. B.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20130301</creationdate><title>Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada</title><author>Parisien, Marc-André ; Walker, Gregg R. ; Little, John M. ; Simpson, Brian N. ; Wang, Xianli ; Perrakis, Daniel D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Civil Engineering</topic><topic>Data</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environment models</topic><topic>Environmental gradient</topic><topic>Environmental Management</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fire behavior</topic><topic>Fires</topic><topic>Forest management</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Land management</topic><topic>Landscape</topic><topic>Modelling</topic><topic>Mountains</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>New technology</topic><topic>Original Paper</topic><topic>Parameterization</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Remote sensing</topic><topic>Simulation</topic><topic>Vegetation</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parisien, Marc-André</creatorcontrib><creatorcontrib>Walker, Gregg R.</creatorcontrib><creatorcontrib>Little, John M.</creatorcontrib><creatorcontrib>Simpson, Brian N.</creatorcontrib><creatorcontrib>Wang, Xianli</creatorcontrib><creatorcontrib>Perrakis, Daniel D. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisien, Marc-André</au><au>Walker, Gregg R.</au><au>Little, John M.</au><au>Simpson, Brian N.</au><au>Wang, Xianli</au><au>Perrakis, Daniel D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>66</volume><issue>2</issue><spage>439</spage><epage>462</epage><pages>439-462</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest managers to estimate spatial burn probabilities. This study describes a methodology for selecting input data and model parameters when creating burn probability maps in difficult-to-model areas and reports the results of a case study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to having particularly mountainous topography, the study area is covered by vegetation types that are poorly represented in fire behavior systems, even though these vegetation types have experienced considerable (if highly irregular) fire activity in premodern times (before 1920). Parameterization of the fire environment for simulation modeling was accomplished by combining various types of fire information (e.g., fire history studies, reconstructed fire climatologies), new technologies (high-resolution remotely sensed data, wind flow modeling), and—a must in data-limited areas—ample expert advice. In this study, we made extensive use of personal accounts from experienced fire behavior officers for the creation of model inputs. Despite difficulties in validating outputs of burn probability models, the multisource model-building approach described here provides a conservative, yet informative, means of estimating the likelihood of fire. Due to the data-intensive nature of the modeling and paucity of input data, an argument is made that modelers must focus on the inputs that are the most influential for their study area.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-012-0495-8</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.439-462
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_miscellaneous_1315620698
source Springer Link
subjects Civil Engineering
Data
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environment models
Environmental gradient
Environmental Management
Estimation
Exact sciences and technology
Fire behavior
Fires
Forest management
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Land management
Landscape
Modelling
Mountains
Natural Hazards
Natural hazards: prediction, damages, etc
New technology
Original Paper
Parameterization
Probability
Probability theory
Remote sensing
Simulation
Vegetation
Wind flow
title Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Considerations%20for%20modeling%20burn%20probability%20across%20landscapes%20with%20steep%20environmental%20gradients:%20an%20example%20from%20the%20Columbia%20Mountains,%20Canada&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Parisien,%20Marc-Andr%C3%A9&rft.date=2013-03-01&rft.volume=66&rft.issue=2&rft.spage=439&rft.epage=462&rft.pages=439-462&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-012-0495-8&rft_dat=%3Cproquest_cross%3E2473395330%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-47c8d5031e049e990ab7d155d5846828876a0ee6e32f7e7218a52d0de30dd1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473395330&rft_id=info:pmid/&rfr_iscdi=true