Loading…

Discrimination of individual tigers (Panthera tigris) from long distance roars

This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha's Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statisti...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2013-03, Vol.133 (3), p.1762-1769
Main Authors: Ji, An, Johnson, Michael T, Walsh, Edward J, McGee, JoAnn, Armstrong, Douglas L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03
cites cdi_FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03
container_end_page 1769
container_issue 3
container_start_page 1762
container_title The Journal of the Acoustical Society of America
container_volume 133
creator Ji, An
Johnson, Michael T
Walsh, Edward J
McGee, JoAnn
Armstrong, Douglas L
description This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha's Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution.
doi_str_mv 10.1121/1.4789936
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315634192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315634192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWw4AeQl-0ixeNHYi9ReUoVsIB15CR2MUriYidI_D2uWliNZnR0R_cgdAlkCUDhGpa8kEqx_AhNQVCSSUH5MZoSQiDjKs8n6CzGz7QKydQpmlDGc064mKLnWxfr4DrX68H5HnuLXd-4b9eMusWD25gQ8fxV98OHCXp3CC4usA2-w63vN7hxcdB9bXDwOsRzdGJ1G83FYc7Q-_3d2-oxW788PK1u1lnNZD5kVZ0z3hBgoCojteGFVdQKJkUuhKqYIgVlUrKaWCZVJZTVtQBSQQGsMA1hMzTf526D_xpNHMou9TBtq3vjx1imZJFegKIJXezROvgYg7HlNvXV4acEUu70lVAe9CX26hA7Vp1p_sk_X-wXxw9oqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315634192</pqid></control><display><type>article</type><title>Discrimination of individual tigers (Panthera tigris) from long distance roars</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ji, An ; Johnson, Michael T ; Walsh, Edward J ; McGee, JoAnn ; Armstrong, Douglas L</creator><creatorcontrib>Ji, An ; Johnson, Michael T ; Walsh, Edward J ; McGee, JoAnn ; Armstrong, Douglas L</creatorcontrib><description>This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha's Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4789936</identifier><identifier>PMID: 23464045</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustics ; Animals ; Discriminant Analysis ; Female ; Male ; Markov Chains ; Pattern Recognition, Automated ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Sound Spectrography ; Tigers - physiology ; Time Factors ; Vocalization, Animal</subject><ispartof>The Journal of the Acoustical Society of America, 2013-03, Vol.133 (3), p.1762-1769</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03</citedby><cites>FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23464045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, An</creatorcontrib><creatorcontrib>Johnson, Michael T</creatorcontrib><creatorcontrib>Walsh, Edward J</creatorcontrib><creatorcontrib>McGee, JoAnn</creatorcontrib><creatorcontrib>Armstrong, Douglas L</creatorcontrib><title>Discrimination of individual tigers (Panthera tigris) from long distance roars</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha's Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Male</subject><subject>Markov Chains</subject><subject>Pattern Recognition, Automated</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Sound Spectrography</subject><subject>Tigers - physiology</subject><subject>Time Factors</subject><subject>Vocalization, Animal</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWw4AeQl-0ixeNHYi9ReUoVsIB15CR2MUriYidI_D2uWliNZnR0R_cgdAlkCUDhGpa8kEqx_AhNQVCSSUH5MZoSQiDjKs8n6CzGz7QKydQpmlDGc064mKLnWxfr4DrX68H5HnuLXd-4b9eMusWD25gQ8fxV98OHCXp3CC4usA2-w63vN7hxcdB9bXDwOsRzdGJ1G83FYc7Q-_3d2-oxW788PK1u1lnNZD5kVZ0z3hBgoCojteGFVdQKJkUuhKqYIgVlUrKaWCZVJZTVtQBSQQGsMA1hMzTf526D_xpNHMou9TBtq3vjx1imZJFegKIJXezROvgYg7HlNvXV4acEUu70lVAe9CX26hA7Vp1p_sk_X-wXxw9oqA</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Ji, An</creator><creator>Johnson, Michael T</creator><creator>Walsh, Edward J</creator><creator>McGee, JoAnn</creator><creator>Armstrong, Douglas L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>Discrimination of individual tigers (Panthera tigris) from long distance roars</title><author>Ji, An ; Johnson, Michael T ; Walsh, Edward J ; McGee, JoAnn ; Armstrong, Douglas L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Male</topic><topic>Markov Chains</topic><topic>Pattern Recognition, Automated</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Sound Spectrography</topic><topic>Tigers - physiology</topic><topic>Time Factors</topic><topic>Vocalization, Animal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, An</creatorcontrib><creatorcontrib>Johnson, Michael T</creatorcontrib><creatorcontrib>Walsh, Edward J</creatorcontrib><creatorcontrib>McGee, JoAnn</creatorcontrib><creatorcontrib>Armstrong, Douglas L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, An</au><au>Johnson, Michael T</au><au>Walsh, Edward J</au><au>McGee, JoAnn</au><au>Armstrong, Douglas L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of individual tigers (Panthera tigris) from long distance roars</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2013-03</date><risdate>2013</risdate><volume>133</volume><issue>3</issue><spage>1762</spage><epage>1769</epage><pages>1762-1769</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha's Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution.</abstract><cop>United States</cop><pmid>23464045</pmid><doi>10.1121/1.4789936</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2013-03, Vol.133 (3), p.1762-1769
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_1315634192
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustics
Animals
Discriminant Analysis
Female
Male
Markov Chains
Pattern Recognition, Automated
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Sound Spectrography
Tigers - physiology
Time Factors
Vocalization, Animal
title Discrimination of individual tigers (Panthera tigris) from long distance roars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20individual%20tigers%20(Panthera%20tigris)%20from%20long%20distance%20roars&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ji,%20An&rft.date=2013-03&rft.volume=133&rft.issue=3&rft.spage=1762&rft.epage=1769&rft.pages=1762-1769&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4789936&rft_dat=%3Cproquest_cross%3E1315634192%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-bc634d01319be8ae47f92f53856559b390723883c0f389b59fac510b17137ed03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315634192&rft_id=info:pmid/23464045&rfr_iscdi=true