Loading…

Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature

Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstruc...

Full description

Saved in:
Bibliographic Details
Published in:Fibers and polymers 2012-04, Vol.13 (4), p.466-470
Main Authors: Milicevic, D., Micic, M., Stamboliev, G., Leskovac, A., Mitric, M., Suljovrujic, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93
cites cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93
container_end_page 470
container_issue 4
container_start_page 466
container_title Fibers and polymers
container_volume 13
creator Milicevic, D.
Micic, M.
Stamboliev, G.
Leskovac, A.
Mitric, M.
Suljovrujic, E.
description Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function ( f c ); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.
doi_str_mv 10.1007/s12221-012-0466-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315642422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660358971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</originalsourceid><addsrcrecordid>eNp1kT1rHDEQhhcTg52zf4A7QRo3cvS1q1VpjsQ2OKSJa6GTZs8yOukiaQ_u31vLpTABVzPF8z4M83bdDSV3lBD5vVDGGMWEMkzEMGBx1l3SUfaYkJ59aTtjCiuq5EX3tZQ3QgbKJL_s4i9vcyo1z7bOGZCJDtl8LNWE4KOvR5QmtE_hmAJMPhaUsodYwaGDN6ik4B1ucAXUHFDtq49bZGrzIAhwMAtZYbeHbBb_VXc-mVDg-t9cdS8_f_xZP-Ln3w9P6_tnbLlQFYMDZ82kGJdm7KVSzm0GJZUj_cBHSSUdjB05dSPv1QYUUaCE2wjLgVgGiq-625N3n9PfGUrVO18shGAipLloymk_CCYYa-i3_9C3NOfYrtOUUC7EwPhC0RO1fKtkmPQ--53JxwbppQF9akC3BvTSgBYtw06Z0ti4hfzR_FnoHQR2isA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013446232</pqid></control><display><type>article</type><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><source>Springer Nature</source><creator>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</creator><creatorcontrib>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</creatorcontrib><description>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function ( f c ); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</description><identifier>ISSN: 1229-9197</identifier><identifier>EISSN: 1875-0052</identifier><identifier>DOI: 10.1007/s12221-012-0466-4</identifier><language>eng</language><publisher>Heidelberg: The Korean Fiber Society</publisher><subject>Chemistry ; Chemistry and Materials Science ; Crystallinity ; Density ; Differential scanning calorimetry ; Orientation ; Polyethylenes ; Polymer Sciences ; Polypropylenes ; Scanning electron microscopy ; Transformations</subject><ispartof>Fibers and polymers, 2012-04, Vol.13 (4), p.466-470</ispartof><rights>The Korean Fiber Society and Springer Netherlands 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</citedby><cites>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Milicevic, D.</creatorcontrib><creatorcontrib>Micic, M.</creatorcontrib><creatorcontrib>Stamboliev, G.</creatorcontrib><creatorcontrib>Leskovac, A.</creatorcontrib><creatorcontrib>Mitric, M.</creatorcontrib><creatorcontrib>Suljovrujic, E.</creatorcontrib><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><title>Fibers and polymers</title><addtitle>Fibers Polym</addtitle><description>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function ( f c ); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallinity</subject><subject>Density</subject><subject>Differential scanning calorimetry</subject><subject>Orientation</subject><subject>Polyethylenes</subject><subject>Polymer Sciences</subject><subject>Polypropylenes</subject><subject>Scanning electron microscopy</subject><subject>Transformations</subject><issn>1229-9197</issn><issn>1875-0052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kT1rHDEQhhcTg52zf4A7QRo3cvS1q1VpjsQ2OKSJa6GTZs8yOukiaQ_u31vLpTABVzPF8z4M83bdDSV3lBD5vVDGGMWEMkzEMGBx1l3SUfaYkJ59aTtjCiuq5EX3tZQ3QgbKJL_s4i9vcyo1z7bOGZCJDtl8LNWE4KOvR5QmtE_hmAJMPhaUsodYwaGDN6ik4B1ucAXUHFDtq49bZGrzIAhwMAtZYbeHbBb_VXc-mVDg-t9cdS8_f_xZP-Ln3w9P6_tnbLlQFYMDZ82kGJdm7KVSzm0GJZUj_cBHSSUdjB05dSPv1QYUUaCE2wjLgVgGiq-625N3n9PfGUrVO18shGAipLloymk_CCYYa-i3_9C3NOfYrtOUUC7EwPhC0RO1fKtkmPQ--53JxwbppQF9akC3BvTSgBYtw06Z0ti4hfzR_FnoHQR2isA</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Milicevic, D.</creator><creator>Micic, M.</creator><creator>Stamboliev, G.</creator><creator>Leskovac, A.</creator><creator>Mitric, M.</creator><creator>Suljovrujic, E.</creator><general>The Korean Fiber Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201204</creationdate><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><author>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallinity</topic><topic>Density</topic><topic>Differential scanning calorimetry</topic><topic>Orientation</topic><topic>Polyethylenes</topic><topic>Polymer Sciences</topic><topic>Polypropylenes</topic><topic>Scanning electron microscopy</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Milicevic, D.</creatorcontrib><creatorcontrib>Micic, M.</creatorcontrib><creatorcontrib>Stamboliev, G.</creatorcontrib><creatorcontrib>Leskovac, A.</creatorcontrib><creatorcontrib>Mitric, M.</creatorcontrib><creatorcontrib>Suljovrujic, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Fibers and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milicevic, D.</au><au>Micic, M.</au><au>Stamboliev, G.</au><au>Leskovac, A.</au><au>Mitric, M.</au><au>Suljovrujic, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</atitle><jtitle>Fibers and polymers</jtitle><stitle>Fibers Polym</stitle><date>2012-04</date><risdate>2012</risdate><volume>13</volume><issue>4</issue><spage>466</spage><epage>470</epage><pages>466-470</pages><issn>1229-9197</issn><eissn>1875-0052</eissn><abstract>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function ( f c ); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</abstract><cop>Heidelberg</cop><pub>The Korean Fiber Society</pub><doi>10.1007/s12221-012-0466-4</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1229-9197
ispartof Fibers and polymers, 2012-04, Vol.13 (4), p.466-470
issn 1229-9197
1875-0052
language eng
recordid cdi_proquest_miscellaneous_1315642422
source Springer Nature
subjects Chemistry
Chemistry and Materials Science
Crystallinity
Density
Differential scanning calorimetry
Orientation
Polyethylenes
Polymer Sciences
Polypropylenes
Scanning electron microscopy
Transformations
title Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20crystallinity%20of%20polyolefins%20oriented%20via%20solid-state%20stretching%20at%20an%20elevated%20temperature&rft.jtitle=Fibers%20and%20polymers&rft.au=Milicevic,%20D.&rft.date=2012-04&rft.volume=13&rft.issue=4&rft.spage=466&rft.epage=470&rft.pages=466-470&rft.issn=1229-9197&rft.eissn=1875-0052&rft_id=info:doi/10.1007/s12221-012-0466-4&rft_dat=%3Cproquest_cross%3E2660358971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1013446232&rft_id=info:pmid/&rfr_iscdi=true