Loading…
Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature
Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstruc...
Saved in:
Published in: | Fibers and polymers 2012-04, Vol.13 (4), p.466-470 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93 |
container_end_page | 470 |
container_issue | 4 |
container_start_page | 466 |
container_title | Fibers and polymers |
container_volume | 13 |
creator | Milicevic, D. Micic, M. Stamboliev, G. Leskovac, A. Mitric, M. Suljovrujic, E. |
description | Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function (
f
c
); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins. |
doi_str_mv | 10.1007/s12221-012-0466-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315642422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660358971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</originalsourceid><addsrcrecordid>eNp1kT1rHDEQhhcTg52zf4A7QRo3cvS1q1VpjsQ2OKSJa6GTZs8yOukiaQ_u31vLpTABVzPF8z4M83bdDSV3lBD5vVDGGMWEMkzEMGBx1l3SUfaYkJ59aTtjCiuq5EX3tZQ3QgbKJL_s4i9vcyo1z7bOGZCJDtl8LNWE4KOvR5QmtE_hmAJMPhaUsodYwaGDN6ik4B1ucAXUHFDtq49bZGrzIAhwMAtZYbeHbBb_VXc-mVDg-t9cdS8_f_xZP-Ln3w9P6_tnbLlQFYMDZ82kGJdm7KVSzm0GJZUj_cBHSSUdjB05dSPv1QYUUaCE2wjLgVgGiq-625N3n9PfGUrVO18shGAipLloymk_CCYYa-i3_9C3NOfYrtOUUC7EwPhC0RO1fKtkmPQ--53JxwbppQF9akC3BvTSgBYtw06Z0ti4hfzR_FnoHQR2isA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013446232</pqid></control><display><type>article</type><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><source>Springer Nature</source><creator>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</creator><creatorcontrib>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</creatorcontrib><description>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function (
f
c
); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</description><identifier>ISSN: 1229-9197</identifier><identifier>EISSN: 1875-0052</identifier><identifier>DOI: 10.1007/s12221-012-0466-4</identifier><language>eng</language><publisher>Heidelberg: The Korean Fiber Society</publisher><subject>Chemistry ; Chemistry and Materials Science ; Crystallinity ; Density ; Differential scanning calorimetry ; Orientation ; Polyethylenes ; Polymer Sciences ; Polypropylenes ; Scanning electron microscopy ; Transformations</subject><ispartof>Fibers and polymers, 2012-04, Vol.13 (4), p.466-470</ispartof><rights>The Korean Fiber Society and Springer Netherlands 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</citedby><cites>FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Milicevic, D.</creatorcontrib><creatorcontrib>Micic, M.</creatorcontrib><creatorcontrib>Stamboliev, G.</creatorcontrib><creatorcontrib>Leskovac, A.</creatorcontrib><creatorcontrib>Mitric, M.</creatorcontrib><creatorcontrib>Suljovrujic, E.</creatorcontrib><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><title>Fibers and polymers</title><addtitle>Fibers Polym</addtitle><description>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function (
f
c
); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallinity</subject><subject>Density</subject><subject>Differential scanning calorimetry</subject><subject>Orientation</subject><subject>Polyethylenes</subject><subject>Polymer Sciences</subject><subject>Polypropylenes</subject><subject>Scanning electron microscopy</subject><subject>Transformations</subject><issn>1229-9197</issn><issn>1875-0052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kT1rHDEQhhcTg52zf4A7QRo3cvS1q1VpjsQ2OKSJa6GTZs8yOukiaQ_u31vLpTABVzPF8z4M83bdDSV3lBD5vVDGGMWEMkzEMGBx1l3SUfaYkJ59aTtjCiuq5EX3tZQ3QgbKJL_s4i9vcyo1z7bOGZCJDtl8LNWE4KOvR5QmtE_hmAJMPhaUsodYwaGDN6ik4B1ucAXUHFDtq49bZGrzIAhwMAtZYbeHbBb_VXc-mVDg-t9cdS8_f_xZP-Ln3w9P6_tnbLlQFYMDZ82kGJdm7KVSzm0GJZUj_cBHSSUdjB05dSPv1QYUUaCE2wjLgVgGiq-625N3n9PfGUrVO18shGAipLloymk_CCYYa-i3_9C3NOfYrtOUUC7EwPhC0RO1fKtkmPQ--53JxwbppQF9akC3BvTSgBYtw06Z0ti4hfzR_FnoHQR2isA</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Milicevic, D.</creator><creator>Micic, M.</creator><creator>Stamboliev, G.</creator><creator>Leskovac, A.</creator><creator>Mitric, M.</creator><creator>Suljovrujic, E.</creator><general>The Korean Fiber Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201204</creationdate><title>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</title><author>Milicevic, D. ; Micic, M. ; Stamboliev, G. ; Leskovac, A. ; Mitric, M. ; Suljovrujic, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallinity</topic><topic>Density</topic><topic>Differential scanning calorimetry</topic><topic>Orientation</topic><topic>Polyethylenes</topic><topic>Polymer Sciences</topic><topic>Polypropylenes</topic><topic>Scanning electron microscopy</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Milicevic, D.</creatorcontrib><creatorcontrib>Micic, M.</creatorcontrib><creatorcontrib>Stamboliev, G.</creatorcontrib><creatorcontrib>Leskovac, A.</creatorcontrib><creatorcontrib>Mitric, M.</creatorcontrib><creatorcontrib>Suljovrujic, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Fibers and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milicevic, D.</au><au>Micic, M.</au><au>Stamboliev, G.</au><au>Leskovac, A.</au><au>Mitric, M.</au><au>Suljovrujic, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature</atitle><jtitle>Fibers and polymers</jtitle><stitle>Fibers Polym</stitle><date>2012-04</date><risdate>2012</risdate><volume>13</volume><issue>4</issue><spage>466</spage><epage>470</epage><pages>466-470</pages><issn>1229-9197</issn><eissn>1875-0052</eissn><abstract>Different polyolefines (low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and isotactic polypropylene (iPP)) were oriented via solid-state stretching at an elevated temperature. In order to investigate orientation-induced changes in microstructure and crystallinity, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were employed. To quantify the degree of molecular orientation WAXS data were used to calculate Herman’s orientation function (
f
c
); the results reinforce the morphological picture obtained from OM and SEM confirming Peterlin’s molecular model of drawing. Furthermore, orientation-induced changes in the crystalline phase, especially in its volume and perfection, were observed by DSC and WAXS. Comparison between these data showed that the biggest change in the degree of crystallinity was achieved during the transformation of the initial lamellar into fibrillar structure. After completion of this transformation further orientation, which occurs through plastic deformation of fibre structure, introduces only minor changes in crystallinity. The overall orientation-induced behaviour hasn’t been considerably influenced by the structural differences amongst polyolefins.</abstract><cop>Heidelberg</cop><pub>The Korean Fiber Society</pub><doi>10.1007/s12221-012-0466-4</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1229-9197 |
ispartof | Fibers and polymers, 2012-04, Vol.13 (4), p.466-470 |
issn | 1229-9197 1875-0052 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315642422 |
source | Springer Nature |
subjects | Chemistry Chemistry and Materials Science Crystallinity Density Differential scanning calorimetry Orientation Polyethylenes Polymer Sciences Polypropylenes Scanning electron microscopy Transformations |
title | Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20crystallinity%20of%20polyolefins%20oriented%20via%20solid-state%20stretching%20at%20an%20elevated%20temperature&rft.jtitle=Fibers%20and%20polymers&rft.au=Milicevic,%20D.&rft.date=2012-04&rft.volume=13&rft.issue=4&rft.spage=466&rft.epage=470&rft.pages=466-470&rft.issn=1229-9197&rft.eissn=1875-0052&rft_id=info:doi/10.1007/s12221-012-0466-4&rft_dat=%3Cproquest_cross%3E2660358971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ededcaf9237a85799ddb6979d0563871716ac831d8359be909e94db4c3e0c2e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1013446232&rft_id=info:pmid/&rfr_iscdi=true |