Loading…

Characterization of Mechanical Properties: Low-Density Polyethylene Nanocomposite Using Nanoalumina Particle as Filler

Nanocomposites based on low-density polyethylene (LDPE), containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with sil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomaterials 2012-01, Vol.2012 (2012), p.1-6
Main Authors: Ibrahim, Azowa, Choong, Thomas S. Y., Abdullah, Luqman Chuah, Song, N. L., Chee, Ching Yern, Ratnam, Chantara Thevy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocomposites based on low-density polyethylene (LDPE), containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.
ISSN:1687-4110
1687-4129
DOI:10.1155/2012/215978