Loading…
Region-dependent micro damage of enamel under indentation
The objective of this investigation is to explore the region-dependent damage behavior of enamel, as well as to develop a good understanding of the deformation mech- anisms of enamel with numerical modeling. Nanoinden- tation experiments have been performed to investigate the load-penetration depth...
Saved in:
Published in: | Acta mechanica Sinica 2012-12, Vol.28 (6), p.1651-1658 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this investigation is to explore the region-dependent damage behavior of enamel, as well as to develop a good understanding of the deformation mech- anisms of enamel with numerical modeling. Nanoinden- tation experiments have been performed to investigate the load-penetration depth responses for outer and inner enamel. Results show that the unloading curve does not follow the loading curve, and degradation of stiffness in the unloading curve is observed. Based on the experimental data, a physi- cal quantity, the chain density in protein, has been introduced to the Drucker-Prager plastic model. Numerical simulations show that the simulated load-penetration depth curves agree with the experiments, and the stiffness degradation behav- iors of outer and inner enamel are captured by the numerical model. The region-dependent damage behavior of enamel could be revealed by the numerical model. The micro dam- age affected area at inner enamel is larger than that at outer enamel, indicating that the inner enamel experiences more micro damage than the outer one. Compared with its outer counterpart, the inner enamel which is rich in organic protein could break more internal protein chains to dissipate energy and to enhance its resistance to fracture accordingly. |
---|---|
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-012-0203-7 |