Loading…

Complexation at the edges of hydrotalcite: The cases of arsenate and chromate

[Display omitted] ► Hydrotalcite edges contribute to anion uptake. ► Arsenate forms inner-sphere edge complexes. ► Chromate has a much lesser affinity for edge adsorption sites. ► Stability follows the predictions of the surface complexation concept. Sorption of CrO42- and HAsO42- by hydrotalcite, i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2013-03, Vol.393, p.314-318
Main Authors: Jobbágy, Matías, Regazzoni, Alberto E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3
cites cdi_FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3
container_end_page 318
container_issue
container_start_page 314
container_title Journal of colloid and interface science
container_volume 393
creator Jobbágy, Matías
Regazzoni, Alberto E.
description [Display omitted] ► Hydrotalcite edges contribute to anion uptake. ► Arsenate forms inner-sphere edge complexes. ► Chromate has a much lesser affinity for edge adsorption sites. ► Stability follows the predictions of the surface complexation concept. Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pH≈pQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces.
doi_str_mv 10.1016/j.jcis.2012.10.069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315704664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979712012647</els_id><sourcerecordid>1282839864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EotvCH-AAuSBxyXbsxHGMuKAVX1IrDrRna7DH3aySeLGzFf33dZqlR3qyPPPMO_bD2BsOaw68Od-td7ZLawFc5MIaGv2MrThoWSoO1XO2AhC81EqrE3aa0g6Acyn1S3YiKgFQ1XzFLjdh2Pf0F6cujAVOxbSlgtwNpSL4YnvnYpiwt91EH4ur3LKYlhbGRCNOVODoCruNYciXV-yFxz7R6-N5xq6_frnafC8vfn77sfl8UVopq6msPUjlCWwtHElphdAoGu5q51G3VQ2yzR-witqmErXQtQavQDbKS-CIrjpjH5bcfQx_DpQmM3TJUt_jSOGQDK-4VFA3Tf00KlrRVrp9QMWC2hhSiuTNPnYDxjvDwczGzc7Mxs1sfK5l43no7TH_8Hsg9zjyT3EG3h8BTBZ7H3GcMx45xRvBH7h3C-cxGLyJmbn-lTc1AKBawdtMfFoIympvO4om2Y5GS66LZCfjQve_l94DxyOlew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282839864</pqid></control><display><type>article</type><title>Complexation at the edges of hydrotalcite: The cases of arsenate and chromate</title><source>ScienceDirect Journals</source><creator>Jobbágy, Matías ; Regazzoni, Alberto E.</creator><creatorcontrib>Jobbágy, Matías ; Regazzoni, Alberto E.</creatorcontrib><description>[Display omitted] ► Hydrotalcite edges contribute to anion uptake. ► Arsenate forms inner-sphere edge complexes. ► Chromate has a much lesser affinity for edge adsorption sites. ► Stability follows the predictions of the surface complexation concept. Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pH≈pQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2012.10.069</identifier><identifier>PMID: 23200341</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adsorption ; Aluminum Hydroxide - chemistry ; Anions ; Arsenate ; Arsenates ; Arsenates - chemistry ; Chemistry ; Chlorides ; Chromate ; Chromates - chemistry ; Crystal structure ; electrophoresis ; Exact sciences and technology ; General and physical chemistry ; Hydrogen-Ion Concentration ; Hydrotalcite ; ion exchange ; Isotherms ; Layered double hydroxides ; Magnesium Hydroxide - chemistry ; Solid-liquid interface ; Sorption ; Surface complexation ; Surface physical chemistry ; Surface Properties ; Uptakes</subject><ispartof>Journal of colloid and interface science, 2013-03, Vol.393, p.314-318</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3</citedby><cites>FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27162141$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23200341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jobbágy, Matías</creatorcontrib><creatorcontrib>Regazzoni, Alberto E.</creatorcontrib><title>Complexation at the edges of hydrotalcite: The cases of arsenate and chromate</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] ► Hydrotalcite edges contribute to anion uptake. ► Arsenate forms inner-sphere edge complexes. ► Chromate has a much lesser affinity for edge adsorption sites. ► Stability follows the predictions of the surface complexation concept. Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pH≈pQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces.</description><subject>Adsorption</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Anions</subject><subject>Arsenate</subject><subject>Arsenates</subject><subject>Arsenates - chemistry</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Chromate</subject><subject>Chromates - chemistry</subject><subject>Crystal structure</subject><subject>electrophoresis</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrotalcite</subject><subject>ion exchange</subject><subject>Isotherms</subject><subject>Layered double hydroxides</subject><subject>Magnesium Hydroxide - chemistry</subject><subject>Solid-liquid interface</subject><subject>Sorption</subject><subject>Surface complexation</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Uptakes</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EotvCH-AAuSBxyXbsxHGMuKAVX1IrDrRna7DH3aySeLGzFf33dZqlR3qyPPPMO_bD2BsOaw68Od-td7ZLawFc5MIaGv2MrThoWSoO1XO2AhC81EqrE3aa0g6Acyn1S3YiKgFQ1XzFLjdh2Pf0F6cujAVOxbSlgtwNpSL4YnvnYpiwt91EH4ur3LKYlhbGRCNOVODoCruNYciXV-yFxz7R6-N5xq6_frnafC8vfn77sfl8UVopq6msPUjlCWwtHElphdAoGu5q51G3VQ2yzR-witqmErXQtQavQDbKS-CIrjpjH5bcfQx_DpQmM3TJUt_jSOGQDK-4VFA3Tf00KlrRVrp9QMWC2hhSiuTNPnYDxjvDwczGzc7Mxs1sfK5l43no7TH_8Hsg9zjyT3EG3h8BTBZ7H3GcMx45xRvBH7h3C-cxGLyJmbn-lTc1AKBawdtMfFoIympvO4om2Y5GS66LZCfjQve_l94DxyOlew</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Jobbágy, Matías</creator><creator>Regazzoni, Alberto E.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Complexation at the edges of hydrotalcite: The cases of arsenate and chromate</title><author>Jobbágy, Matías ; Regazzoni, Alberto E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Anions</topic><topic>Arsenate</topic><topic>Arsenates</topic><topic>Arsenates - chemistry</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Chromate</topic><topic>Chromates - chemistry</topic><topic>Crystal structure</topic><topic>electrophoresis</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrotalcite</topic><topic>ion exchange</topic><topic>Isotherms</topic><topic>Layered double hydroxides</topic><topic>Magnesium Hydroxide - chemistry</topic><topic>Solid-liquid interface</topic><topic>Sorption</topic><topic>Surface complexation</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jobbágy, Matías</creatorcontrib><creatorcontrib>Regazzoni, Alberto E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jobbágy, Matías</au><au>Regazzoni, Alberto E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexation at the edges of hydrotalcite: The cases of arsenate and chromate</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>393</volume><spage>314</spage><epage>318</epage><pages>314-318</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted] ► Hydrotalcite edges contribute to anion uptake. ► Arsenate forms inner-sphere edge complexes. ► Chromate has a much lesser affinity for edge adsorption sites. ► Stability follows the predictions of the surface complexation concept. Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pH≈pQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23200341</pmid><doi>10.1016/j.jcis.2012.10.069</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2013-03, Vol.393, p.314-318
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1315704664
source ScienceDirect Journals
subjects Adsorption
Aluminum Hydroxide - chemistry
Anions
Arsenate
Arsenates
Arsenates - chemistry
Chemistry
Chlorides
Chromate
Chromates - chemistry
Crystal structure
electrophoresis
Exact sciences and technology
General and physical chemistry
Hydrogen-Ion Concentration
Hydrotalcite
ion exchange
Isotherms
Layered double hydroxides
Magnesium Hydroxide - chemistry
Solid-liquid interface
Sorption
Surface complexation
Surface physical chemistry
Surface Properties
Uptakes
title Complexation at the edges of hydrotalcite: The cases of arsenate and chromate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexation%20at%20the%20edges%20of%20hydrotalcite:%20The%20cases%20of%20arsenate%20and%20chromate&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Jobb%C3%A1gy,%20Mat%C3%ADas&rft.date=2013-03-01&rft.volume=393&rft.spage=314&rft.epage=318&rft.pages=314-318&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2012.10.069&rft_dat=%3Cproquest_cross%3E1282839864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c553t-4f057fe0c42de55c229a261d4dfa9834058103c7e8632429490f70567f501aad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282839864&rft_id=info:pmid/23200341&rfr_iscdi=true