Loading…

Alignment of Bicelles Studied with High-Field Magnetic Birefringence and Small-Angle Neutron Scattering Measurements

Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DM...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2013-03, Vol.29 (10), p.3467-3473
Main Authors: Liebi, Marianne, van Rhee, Peter G, Christianen, Peter C. M, Kohlbrecher, Joachim, Fischer, Peter, Walde, Peter, Windhab, Erich J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm3+), and perpendicular alignment with dysprosium (Dy3+). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.
ISSN:0743-7463
1520-5827
DOI:10.1021/la3050785