Loading…

A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution

The light-induced Ni–L state of [NiFe] hydrogenases is well suited to investigate the identity of the amino acid base that functions as a proton acceptor in the hydrogen turnover cycle in this important class of enzymes. Density functional theory calculations have been performed on large models that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-03, Vol.135 (10), p.3915-3925
Main Authors: Kampa, Mario, Pandelia, Maria-Eirini, Lubitz, Wolfgang, van Gastel, Maurice, Neese, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3
cites cdi_FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3
container_end_page 3925
container_issue 10
container_start_page 3915
container_title Journal of the American Chemical Society
container_volume 135
creator Kampa, Mario
Pandelia, Maria-Eirini
Lubitz, Wolfgang
van Gastel, Maurice
Neese, Frank
description The light-induced Ni–L state of [NiFe] hydrogenases is well suited to investigate the identity of the amino acid base that functions as a proton acceptor in the hydrogen turnover cycle in this important class of enzymes. Density functional theory calculations have been performed on large models that include the complete [NiFe] center and parts of the second coordination sphere. Combined with experimental data, in particular from electron paramagnetic resonance and Fourier transform infrared (FTIR) spectroscopy, the calculations indicate that the hydride ion, which is located in the bridging position between nickel and iron in the Ni–C state, dissociates upon illumination as a proton and binds to a nearby thiolate base. Moreover, the formation of a functionally relevant nickel–iron bond upon dissociation of the hydride is unequivocally observed and is in full agreement with the observed g values, ligand hyperfine coupling constants, and FTIR stretching frequencies. This metal–metal bond can be protonated and thus functions like a base. The nickel–iron bond is important for all intermediates with an empty bridge in the catalytic cycle, and the electron pair that constitutes this bond thus plays a crucial role in the hydrogen evolution catalyzed by the enzyme.
doi_str_mv 10.1021/ja3115899
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1317409941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317409941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRbK0ufAGZjaCL6FxzWdbS2kJV8LISCZPJSZuaZmpmUunOd_ANfRKjrV25-jn8Hz-cD6FjSi4oYfRypjilMoyiHdSmkhFPUubvojYhhHlB6PMWOrB21pyChXQftRgXhEk_aqPXLr4Bp4qvj8_fxFemTHFeYjcFPM4nU-eNyrTWkOIHpxxgk-Hn23wAL3i4SiszgVJZsPg9d1N8DwUsVakBO7OtcX9pitrlpjxEe5kqLBxtsoOeBv3H3tAb312Pet2xp7hkzhMQ-DLKBJE-15FKeKgYCKEynQYk40kSplQJGVBKdSK5rwnnPpFNwzIiI8076Gy9u6jMWw3WxfPcaigKVYKpbUw5DQSJIkEb9HyN6spYW0EWL6p8rqpVTEn84zbeum3Yk81sncwh3ZJ_MhvgdA0obeOZqauy-fKfoW_GXn-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317409941</pqid></control><display><type>article</type><title>A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kampa, Mario ; Pandelia, Maria-Eirini ; Lubitz, Wolfgang ; van Gastel, Maurice ; Neese, Frank</creator><creatorcontrib>Kampa, Mario ; Pandelia, Maria-Eirini ; Lubitz, Wolfgang ; van Gastel, Maurice ; Neese, Frank</creatorcontrib><description>The light-induced Ni–L state of [NiFe] hydrogenases is well suited to investigate the identity of the amino acid base that functions as a proton acceptor in the hydrogen turnover cycle in this important class of enzymes. Density functional theory calculations have been performed on large models that include the complete [NiFe] center and parts of the second coordination sphere. Combined with experimental data, in particular from electron paramagnetic resonance and Fourier transform infrared (FTIR) spectroscopy, the calculations indicate that the hydride ion, which is located in the bridging position between nickel and iron in the Ni–C state, dissociates upon illumination as a proton and binds to a nearby thiolate base. Moreover, the formation of a functionally relevant nickel–iron bond upon dissociation of the hydride is unequivocally observed and is in full agreement with the observed g values, ligand hyperfine coupling constants, and FTIR stretching frequencies. This metal–metal bond can be protonated and thus functions like a base. The nickel–iron bond is important for all intermediates with an empty bridge in the catalytic cycle, and the electron pair that constitutes this bond thus plays a crucial role in the hydrogen evolution catalyzed by the enzyme.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja3115899</identifier><identifier>PMID: 23402569</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Electron Spin Resonance Spectroscopy ; Hydrogen - chemistry ; Hydrogen - metabolism ; Hydrogenase - chemistry ; Hydrogenase - metabolism ; Light ; Nickel - chemistry ; Nickel - metabolism ; Quantum Theory ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Journal of the American Chemical Society, 2013-03, Vol.135 (10), p.3915-3925</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3</citedby><cites>FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23402569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kampa, Mario</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Lubitz, Wolfgang</creatorcontrib><creatorcontrib>van Gastel, Maurice</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><title>A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The light-induced Ni–L state of [NiFe] hydrogenases is well suited to investigate the identity of the amino acid base that functions as a proton acceptor in the hydrogen turnover cycle in this important class of enzymes. Density functional theory calculations have been performed on large models that include the complete [NiFe] center and parts of the second coordination sphere. Combined with experimental data, in particular from electron paramagnetic resonance and Fourier transform infrared (FTIR) spectroscopy, the calculations indicate that the hydride ion, which is located in the bridging position between nickel and iron in the Ni–C state, dissociates upon illumination as a proton and binds to a nearby thiolate base. Moreover, the formation of a functionally relevant nickel–iron bond upon dissociation of the hydride is unequivocally observed and is in full agreement with the observed g values, ligand hyperfine coupling constants, and FTIR stretching frequencies. This metal–metal bond can be protonated and thus functions like a base. The nickel–iron bond is important for all intermediates with an empty bridge in the catalytic cycle, and the electron pair that constitutes this bond thus plays a crucial role in the hydrogen evolution catalyzed by the enzyme.</description><subject>Biocatalysis</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase - chemistry</subject><subject>Hydrogenase - metabolism</subject><subject>Light</subject><subject>Nickel - chemistry</subject><subject>Nickel - metabolism</subject><subject>Quantum Theory</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkMtKw0AUhgdRbK0ufAGZjaCL6FxzWdbS2kJV8LISCZPJSZuaZmpmUunOd_ANfRKjrV25-jn8Hz-cD6FjSi4oYfRypjilMoyiHdSmkhFPUubvojYhhHlB6PMWOrB21pyChXQftRgXhEk_aqPXLr4Bp4qvj8_fxFemTHFeYjcFPM4nU-eNyrTWkOIHpxxgk-Hn23wAL3i4SiszgVJZsPg9d1N8DwUsVakBO7OtcX9pitrlpjxEe5kqLBxtsoOeBv3H3tAb312Pet2xp7hkzhMQ-DLKBJE-15FKeKgYCKEynQYk40kSplQJGVBKdSK5rwnnPpFNwzIiI8076Gy9u6jMWw3WxfPcaigKVYKpbUw5DQSJIkEb9HyN6spYW0EWL6p8rqpVTEn84zbeum3Yk81sncwh3ZJ_MhvgdA0obeOZqauy-fKfoW_GXn-C</recordid><startdate>20130313</startdate><enddate>20130313</enddate><creator>Kampa, Mario</creator><creator>Pandelia, Maria-Eirini</creator><creator>Lubitz, Wolfgang</creator><creator>van Gastel, Maurice</creator><creator>Neese, Frank</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130313</creationdate><title>A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution</title><author>Kampa, Mario ; Pandelia, Maria-Eirini ; Lubitz, Wolfgang ; van Gastel, Maurice ; Neese, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocatalysis</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase - chemistry</topic><topic>Hydrogenase - metabolism</topic><topic>Light</topic><topic>Nickel - chemistry</topic><topic>Nickel - metabolism</topic><topic>Quantum Theory</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampa, Mario</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Lubitz, Wolfgang</creatorcontrib><creatorcontrib>van Gastel, Maurice</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampa, Mario</au><au>Pandelia, Maria-Eirini</au><au>Lubitz, Wolfgang</au><au>van Gastel, Maurice</au><au>Neese, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-03-13</date><risdate>2013</risdate><volume>135</volume><issue>10</issue><spage>3915</spage><epage>3925</epage><pages>3915-3925</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The light-induced Ni–L state of [NiFe] hydrogenases is well suited to investigate the identity of the amino acid base that functions as a proton acceptor in the hydrogen turnover cycle in this important class of enzymes. Density functional theory calculations have been performed on large models that include the complete [NiFe] center and parts of the second coordination sphere. Combined with experimental data, in particular from electron paramagnetic resonance and Fourier transform infrared (FTIR) spectroscopy, the calculations indicate that the hydride ion, which is located in the bridging position between nickel and iron in the Ni–C state, dissociates upon illumination as a proton and binds to a nearby thiolate base. Moreover, the formation of a functionally relevant nickel–iron bond upon dissociation of the hydride is unequivocally observed and is in full agreement with the observed g values, ligand hyperfine coupling constants, and FTIR stretching frequencies. This metal–metal bond can be protonated and thus functions like a base. The nickel–iron bond is important for all intermediates with an empty bridge in the catalytic cycle, and the electron pair that constitutes this bond thus plays a crucial role in the hydrogen evolution catalyzed by the enzyme.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23402569</pmid><doi>10.1021/ja3115899</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-03, Vol.135 (10), p.3915-3925
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1317409941
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biocatalysis
Electron Spin Resonance Spectroscopy
Hydrogen - chemistry
Hydrogen - metabolism
Hydrogenase - chemistry
Hydrogenase - metabolism
Light
Nickel - chemistry
Nickel - metabolism
Quantum Theory
Spectroscopy, Fourier Transform Infrared
title A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Metal%E2%80%93Metal%20Bond%20in%20the%20Light-Induced%20State%20of%20%5BNiFe%5D%20Hydrogenases%20with%20Relevance%20to%20Hydrogen%20Evolution&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kampa,%20Mario&rft.date=2013-03-13&rft.volume=135&rft.issue=10&rft.spage=3915&rft.epage=3925&rft.pages=3915-3925&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja3115899&rft_dat=%3Cproquest_cross%3E1317409941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-4e7659f40563c9ab38a2e44afcd70f3bb8d1a457111cb536c033605f3b2f059c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1317409941&rft_id=info:pmid/23402569&rfr_iscdi=true