Loading…

State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing

We study theoretically the joint spectral properties of photon-pairs produced through spontaneous four-wave mixing (SFWM) with two spectrally distinct pump pulses in optical fibers. We show that, due to the group velocity difference between the pulses, the signature of the interaction can be signifi...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2013-02, Vol.21 (3), p.2707-2717
Main Authors: Fang, Bin, Cohen, Offir, Moreno, Jamy B, Lorenz, Virginia O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study theoretically the joint spectral properties of photon-pairs produced through spontaneous four-wave mixing (SFWM) with two spectrally distinct pump pulses in optical fibers. We show that, due to the group velocity difference between the pulses, the signature of the interaction can be significantly different from spontaneous parametric down-conversion or SFWM with a single pump pulse. Specifically, we study the case where temporal walk-off between the pumps enables a gradual turn-on and turn-off of the interaction. By utilizing this property, we develop a new approach towards tailoring the spectral correlations within the generated photon pairs, demonstrating the ability to produce factorable photon-pair states, and hence heralded single photons in a pure wave-packet. We show that the use of two pumps is advantageous over single-pump SFWM approaches towards this goal: the usage of the dual-pump configuration enables, in principle, the creation of completely factorable states without any spectral filtering, even in media for which single-pump SFWM tailoring techniques are unsatisfactory, such as standard polarization-maintaining fiber.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.21.002707