Loading…

Hessian Schatten-Norm Regularization for Linear Inverse Problems

We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. The...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2013-05, Vol.22 (5), p.1873-1888
Main Authors: Lefkimmiatis, S., Ward, J. P., Unser, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3
cites cdi_FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3
container_end_page 1888
container_issue 5
container_start_page 1873
container_title IEEE transactions on image processing
container_volume 22
creator Lefkimmiatis, S.
Ward, J. P.
Unser, M.
description We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.
doi_str_mv 10.1109/TIP.2013.2237919
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1318093998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6403545</ieee_id><sourcerecordid>1318093998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3</originalsourceid><addsrcrecordid>eNpFkM9Lw0AQhRdRbK3eBUFyEbykzmQ3u9mbUtQWihat57DZTjSSH3U3EfSvN6VVT_NgvvcOH2OnCGNE0FfL2WIcAfJxFHGlUe-xIWqBIYCI9vsMsQoVCj1gR96_A6CIUR6yQcQ5cKmjIbuekveFqYNn-2balurwoXFV8ESvXWlc8W3aoqmDvHHBvKjJuGBWf5LzFCxck5VU-WN2kJvS08nujtjL3e1yMg3nj_ezyc08tFzLNrS5oAQgsxKyOIPYgAJtUce0UkYYKTNJmGScS1KWVI4GhAKlOImEeGL4iF1ud9eu-ejIt2lVeEtlaWpqOp8ixwQ01zrpUdii1jXeO8rTtSsq475ShHTjLe29pRtv6c5bXznfrXdZRau_wq-oHrjYAcZbU-bO1Lbw_5wSicAIeu5syxVE9PeWAngsYv4DH_99RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318093998</pqid></control><display><type>article</type><title>Hessian Schatten-Norm Regularization for Linear Inverse Problems</title><source>IEEE Xplore (Online service)</source><creator>Lefkimmiatis, S. ; Ward, J. P. ; Unser, M.</creator><creatorcontrib>Lefkimmiatis, S. ; Ward, J. P. ; Unser, M.</creatorcontrib><description>We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2237919</identifier><identifier>PMID: 23303692</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Diagnostic Imaging ; Eigenvalue optimization ; Exact sciences and technology ; Face - anatomy &amp; histology ; Hessian operator ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Imaging ; Information, signal and communications theory ; Inverse problems ; Linear programming ; matrix projections ; Minimization ; Models, Theoretical ; Schatten norms ; Signal processing ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on image processing, 2013-05, Vol.22 (5), p.1873-1888</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3</citedby><cites>FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6403545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27484120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefkimmiatis, S.</creatorcontrib><creatorcontrib>Ward, J. P.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>Hessian Schatten-Norm Regularization for Linear Inverse Problems</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Diagnostic Imaging</subject><subject>Eigenvalue optimization</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy &amp; histology</subject><subject>Hessian operator</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Information, signal and communications theory</subject><subject>Inverse problems</subject><subject>Linear programming</subject><subject>matrix projections</subject><subject>Minimization</subject><subject>Models, Theoretical</subject><subject>Schatten norms</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkM9Lw0AQhRdRbK3eBUFyEbykzmQ3u9mbUtQWihat57DZTjSSH3U3EfSvN6VVT_NgvvcOH2OnCGNE0FfL2WIcAfJxFHGlUe-xIWqBIYCI9vsMsQoVCj1gR96_A6CIUR6yQcQ5cKmjIbuekveFqYNn-2balurwoXFV8ESvXWlc8W3aoqmDvHHBvKjJuGBWf5LzFCxck5VU-WN2kJvS08nujtjL3e1yMg3nj_ezyc08tFzLNrS5oAQgsxKyOIPYgAJtUce0UkYYKTNJmGScS1KWVI4GhAKlOImEeGL4iF1ud9eu-ejIt2lVeEtlaWpqOp8ixwQ01zrpUdii1jXeO8rTtSsq475ShHTjLe29pRtv6c5bXznfrXdZRau_wq-oHrjYAcZbU-bO1Lbw_5wSicAIeu5syxVE9PeWAngsYv4DH_99RA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Lefkimmiatis, S.</creator><creator>Ward, J. P.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Hessian Schatten-Norm Regularization for Linear Inverse Problems</title><author>Lefkimmiatis, S. ; Ward, J. P. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Diagnostic Imaging</topic><topic>Eigenvalue optimization</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy &amp; histology</topic><topic>Hessian operator</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Information, signal and communications theory</topic><topic>Inverse problems</topic><topic>Linear programming</topic><topic>matrix projections</topic><topic>Minimization</topic><topic>Models, Theoretical</topic><topic>Schatten norms</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefkimmiatis, S.</creatorcontrib><creatorcontrib>Ward, J. P.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefkimmiatis, S.</au><au>Ward, J. P.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hessian Schatten-Norm Regularization for Linear Inverse Problems</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>22</volume><issue>5</issue><spage>1873</spage><epage>1888</epage><pages>1873-1888</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23303692</pmid><doi>10.1109/TIP.2013.2237919</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-05, Vol.22 (5), p.1873-1888
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1318093998
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Diagnostic Imaging
Eigenvalue optimization
Exact sciences and technology
Face - anatomy & histology
Hessian operator
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging
Information, signal and communications theory
Inverse problems
Linear programming
matrix projections
Minimization
Models, Theoretical
Schatten norms
Signal processing
Telecommunications and information theory
Vectors
title Hessian Schatten-Norm Regularization for Linear Inverse Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hessian%20Schatten-Norm%20Regularization%20for%20Linear%20Inverse%20Problems&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lefkimmiatis,%20S.&rft.date=2013-05-01&rft.volume=22&rft.issue=5&rft.spage=1873&rft.epage=1888&rft.pages=1873-1888&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2237919&rft_dat=%3Cproquest_cross%3E1318093998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-cf4e800bc60b5b05a0709c195ed7a4a66b6e18b336e7ce7f1a0470773e48e38a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1318093998&rft_id=info:pmid/23303692&rft_ieee_id=6403545&rfr_iscdi=true