Loading…

Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations

A comprehensive quantum chemical analysis of the influence of backbone torsion angles on 31P chemical shifts in DNAs has been carried out. An extensive DFT study employed snapshots obtained from the molecular dynamics simulation of [d(CGCGAATTCGCG)]2 to construct geometries of a hydrated dimethyl ph...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2010-12, Vol.132 (48), p.17139-17148
Main Authors: Přecechtělová, Jana, Novák, Petr, Munzarová, Markéta L, Kaupp, Martin, Sklenář, Vladimír
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533
cites cdi_FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533
container_end_page 17148
container_issue 48
container_start_page 17139
container_title Journal of the American Chemical Society
container_volume 132
creator Přecechtělová, Jana
Novák, Petr
Munzarová, Markéta L
Kaupp, Martin
Sklenář, Vladimír
description A comprehensive quantum chemical analysis of the influence of backbone torsion angles on 31P chemical shifts in DNAs has been carried out. An extensive DFT study employed snapshots obtained from the molecular dynamics simulation of [d(CGCGAATTCGCG)]2 to construct geometries of a hydrated dimethyl phosphate, which was used as a model for the phosphodiester linkage. Our calculations provided differences of 2.1 ± 0.3 and 1.6 ± 0.3 ppm between the BI and BII chemical shifts in two B-DNA residues of interest, which is in a very good agreement with the difference of 1.6 ppm inferred from experimental data. A more negative 31P chemical shift for a residue in pure BI conformation compared to residues in mixed BI/BII conformation states is provided by DFT, in agreement with the NMR experiment. Statistical analysis of the MD/DFT data revealed a large dispersion of chemical shifts in both BI and BII regions of DNA structures. δP ranges within 3.5 ± 0.8 ppm in the BI region and within 4.5 ± 1.5 ppm in the BII region. While the 31P chemical shift becomes more negative with increasing α in BI-DNA, it has the opposite trend in BII-DNA when both α and ζ increase simultaneously. The 31P chemical shift is dominated by the torsion angles α and ζ, while an implicit treatment of β and ε is sufficient. The presence of an explicit solvent leads to a damping and a 2−3 ppm upfield shift of the torsion angle dependences.
doi_str_mv 10.1021/ja104564g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319618522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319618522</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533</originalsourceid><addsrcrecordid>eNptkM1O3DAURq0KVAbooi-AvEGCRcDXjjPJEsKvBAWJdh3d2E7HQ2IPdrKYPj0eDWXF6uqTjo50DyE_gZ0B43C-RGC5LPK_38gMJGeZBF7skBljjGfzshB7ZD_GZZo5L-E72ePA5gKqckb-PS98XC18mCKtF2awCnv6srDdGKl1FOmvSfXGKnqhrKaXqF5b7wztgh9o7YfWOqPpo--NmnoM9GrtMDkiRafplXHRjmt6Mzk1Wu-SucZ-A25WPCS7HfbR_Pi4B-TPzfXv-i57eLq9ry8eMhQgxywvQHelkgbnGtpcFxVojblgpjC5Ym0lKl7mXFYgpBJKdRp1wVuO6T9RSSEOyMnWuwr-bTJxbAYblel7dMZPsYFUooBScp7Q0y2qgo8xmK5ZBTtgWDfAmk3q5jN1Yo8-tFM7GP1J_m-bgOMtgCo2Sz-FFCB-IXoHHiGFsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319618522</pqid></control><display><type>article</type><title>Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Přecechtělová, Jana ; Novák, Petr ; Munzarová, Markéta L ; Kaupp, Martin ; Sklenář, Vladimír</creator><creatorcontrib>Přecechtělová, Jana ; Novák, Petr ; Munzarová, Markéta L ; Kaupp, Martin ; Sklenář, Vladimír</creatorcontrib><description>A comprehensive quantum chemical analysis of the influence of backbone torsion angles on 31P chemical shifts in DNAs has been carried out. An extensive DFT study employed snapshots obtained from the molecular dynamics simulation of [d(CGCGAATTCGCG)]2 to construct geometries of a hydrated dimethyl phosphate, which was used as a model for the phosphodiester linkage. Our calculations provided differences of 2.1 ± 0.3 and 1.6 ± 0.3 ppm between the BI and BII chemical shifts in two B-DNA residues of interest, which is in a very good agreement with the difference of 1.6 ppm inferred from experimental data. A more negative 31P chemical shift for a residue in pure BI conformation compared to residues in mixed BI/BII conformation states is provided by DFT, in agreement with the NMR experiment. Statistical analysis of the MD/DFT data revealed a large dispersion of chemical shifts in both BI and BII regions of DNA structures. δP ranges within 3.5 ± 0.8 ppm in the BI region and within 4.5 ± 1.5 ppm in the BII region. While the 31P chemical shift becomes more negative with increasing α in BI-DNA, it has the opposite trend in BII-DNA when both α and ζ increase simultaneously. The 31P chemical shift is dominated by the torsion angles α and ζ, while an implicit treatment of β and ε is sufficient. The presence of an explicit solvent leads to a damping and a 2−3 ppm upfield shift of the torsion angle dependences.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja104564g</identifier><identifier>PMID: 21073198</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; DNA, B-Form - chemistry ; DNA, B-Form - genetics ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; Molecular Dynamics Simulation ; Phosphorus - chemistry ; Quantum Theory ; Rotation</subject><ispartof>Journal of the American Chemical Society, 2010-12, Vol.132 (48), p.17139-17148</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533</citedby><cites>FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21073198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Přecechtělová, Jana</creatorcontrib><creatorcontrib>Novák, Petr</creatorcontrib><creatorcontrib>Munzarová, Markéta L</creatorcontrib><creatorcontrib>Kaupp, Martin</creatorcontrib><creatorcontrib>Sklenář, Vladimír</creatorcontrib><title>Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A comprehensive quantum chemical analysis of the influence of backbone torsion angles on 31P chemical shifts in DNAs has been carried out. An extensive DFT study employed snapshots obtained from the molecular dynamics simulation of [d(CGCGAATTCGCG)]2 to construct geometries of a hydrated dimethyl phosphate, which was used as a model for the phosphodiester linkage. Our calculations provided differences of 2.1 ± 0.3 and 1.6 ± 0.3 ppm between the BI and BII chemical shifts in two B-DNA residues of interest, which is in a very good agreement with the difference of 1.6 ppm inferred from experimental data. A more negative 31P chemical shift for a residue in pure BI conformation compared to residues in mixed BI/BII conformation states is provided by DFT, in agreement with the NMR experiment. Statistical analysis of the MD/DFT data revealed a large dispersion of chemical shifts in both BI and BII regions of DNA structures. δP ranges within 3.5 ± 0.8 ppm in the BI region and within 4.5 ± 1.5 ppm in the BII region. While the 31P chemical shift becomes more negative with increasing α in BI-DNA, it has the opposite trend in BII-DNA when both α and ζ increase simultaneously. The 31P chemical shift is dominated by the torsion angles α and ζ, while an implicit treatment of β and ε is sufficient. The presence of an explicit solvent leads to a damping and a 2−3 ppm upfield shift of the torsion angle dependences.</description><subject>Base Sequence</subject><subject>DNA, B-Form - chemistry</subject><subject>DNA, B-Form - genetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphorus - chemistry</subject><subject>Quantum Theory</subject><subject>Rotation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM1O3DAURq0KVAbooi-AvEGCRcDXjjPJEsKvBAWJdh3d2E7HQ2IPdrKYPj0eDWXF6uqTjo50DyE_gZ0B43C-RGC5LPK_38gMJGeZBF7skBljjGfzshB7ZD_GZZo5L-E72ePA5gKqckb-PS98XC18mCKtF2awCnv6srDdGKl1FOmvSfXGKnqhrKaXqF5b7wztgh9o7YfWOqPpo--NmnoM9GrtMDkiRafplXHRjmt6Mzk1Wu-SucZ-A25WPCS7HfbR_Pi4B-TPzfXv-i57eLq9ry8eMhQgxywvQHelkgbnGtpcFxVojblgpjC5Ym0lKl7mXFYgpBJKdRp1wVuO6T9RSSEOyMnWuwr-bTJxbAYblel7dMZPsYFUooBScp7Q0y2qgo8xmK5ZBTtgWDfAmk3q5jN1Yo8-tFM7GP1J_m-bgOMtgCo2Sz-FFCB-IXoHHiGFsw</recordid><startdate>20101208</startdate><enddate>20101208</enddate><creator>Přecechtělová, Jana</creator><creator>Novák, Petr</creator><creator>Munzarová, Markéta L</creator><creator>Kaupp, Martin</creator><creator>Sklenář, Vladimír</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101208</creationdate><title>Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations</title><author>Přecechtělová, Jana ; Novák, Petr ; Munzarová, Markéta L ; Kaupp, Martin ; Sklenář, Vladimír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Base Sequence</topic><topic>DNA, B-Form - chemistry</topic><topic>DNA, B-Form - genetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphorus - chemistry</topic><topic>Quantum Theory</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Přecechtělová, Jana</creatorcontrib><creatorcontrib>Novák, Petr</creatorcontrib><creatorcontrib>Munzarová, Markéta L</creatorcontrib><creatorcontrib>Kaupp, Martin</creatorcontrib><creatorcontrib>Sklenář, Vladimír</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Přecechtělová, Jana</au><au>Novák, Petr</au><au>Munzarová, Markéta L</au><au>Kaupp, Martin</au><au>Sklenář, Vladimír</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2010-12-08</date><risdate>2010</risdate><volume>132</volume><issue>48</issue><spage>17139</spage><epage>17148</epage><pages>17139-17148</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A comprehensive quantum chemical analysis of the influence of backbone torsion angles on 31P chemical shifts in DNAs has been carried out. An extensive DFT study employed snapshots obtained from the molecular dynamics simulation of [d(CGCGAATTCGCG)]2 to construct geometries of a hydrated dimethyl phosphate, which was used as a model for the phosphodiester linkage. Our calculations provided differences of 2.1 ± 0.3 and 1.6 ± 0.3 ppm between the BI and BII chemical shifts in two B-DNA residues of interest, which is in a very good agreement with the difference of 1.6 ppm inferred from experimental data. A more negative 31P chemical shift for a residue in pure BI conformation compared to residues in mixed BI/BII conformation states is provided by DFT, in agreement with the NMR experiment. Statistical analysis of the MD/DFT data revealed a large dispersion of chemical shifts in both BI and BII regions of DNA structures. δP ranges within 3.5 ± 0.8 ppm in the BI region and within 4.5 ± 1.5 ppm in the BII region. While the 31P chemical shift becomes more negative with increasing α in BI-DNA, it has the opposite trend in BII-DNA when both α and ζ increase simultaneously. The 31P chemical shift is dominated by the torsion angles α and ζ, while an implicit treatment of β and ε is sufficient. The presence of an explicit solvent leads to a damping and a 2−3 ppm upfield shift of the torsion angle dependences.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21073198</pmid><doi>10.1021/ja104564g</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2010-12, Vol.132 (48), p.17139-17148
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1319618522
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Base Sequence
DNA, B-Form - chemistry
DNA, B-Form - genetics
Magnetic Resonance Spectroscopy
Molecular Conformation
Molecular Dynamics Simulation
Phosphorus - chemistry
Quantum Theory
Rotation
title Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20Chemical%20Shifts%20in%20a%20Nucleic%20Acid%20Backbone%20from%20Combined%20Molecular%20Dynamics%20and%20Density%20Functional%20Calculations&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Pr%CC%8Cecechte%CC%8Clova%CC%81,%20Jana&rft.date=2010-12-08&rft.volume=132&rft.issue=48&rft.spage=17139&rft.epage=17148&rft.pages=17139-17148&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja104564g&rft_dat=%3Cproquest_cross%3E1319618522%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-461df8c5ea7d1b4d691dda430e6e4c0b939284259135c3ccfdad62b2a19839533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1319618522&rft_id=info:pmid/21073198&rfr_iscdi=true