Loading…

Kaempferol Inhibits P. intermedia Lipopolysaccharide‐Induced Production of Nitric Oxide Through Translational Regulation in Murine Macrophages: Critical Role of Heme Oxygenase‐1‐Mediated ROS Reduction

Background: Nitric oxide (NO) could be a potential target for the development of new therapeutic approaches to the treatment of periodontal disease because this molecule plays a significant role in the tissue destruction observed in periodontitis. In this study, the authors investigate the effect of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of periodontology (1970) 2013-04, Vol.84 (4), p.545-555
Main Authors: Choi, In Soon, Choi, Eun‐Young, Jin, Ji‐Young, Park, Hae Ryoun, Choi, Jeom‐Il, Kim, Sung‐Jo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Nitric oxide (NO) could be a potential target for the development of new therapeutic approaches to the treatment of periodontal disease because this molecule plays a significant role in the tissue destruction observed in periodontitis. In this study, the authors investigate the effect of kaempferol on the production of NO by murine macrophage‐like RAW264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in periodontal disease, and try to determine the underlying mechanisms of action. Methods: NO production was assayed by measuring the accumulation of nitrite in culture supernatants. Real‐time polymerase chain reaction was performed to quantify inducible NO synthase (iNOS) and heme oxygenase‐1 (HO‐1) mRNA expression. iNOS and HO‐1 protein expression and phosphorylation of c‐Jun N‐terminal kinase and p38 were characterized via immunoblot analysis. Reactive oxygen species (ROS) production was measured using the redox‐sensitive fluorescent probe 2′,7′‐dichlorodihydrofluorescein diacetate. Results: Kaempferol significantly inhibited NO production and expression of iNOS protein in P. intermedia LPS‐stimulated RAW246.7 cells without affecting iNOS mRNA expression. Kaempferol upregulated HO‐1 expression in LPS‐activated cells. Inhibition of HO‐1 activity by tin protoporphyrin IX (SnPP) abolished the suppressive effect of kaempferol on NO production. In addition, kaempferol significantly attenuated P. intermedia LPS‐induced increase of intracellular ROS, and SnPP blocked this reduction. Treatment with antioxidants downregulated the production of LPS‐induced NO. Conclusions: Kaempferol inhibits NO production and iNOS protein expression in P. intermedia LPS‐stimulated RAW264.7 cells at the translational level via HO‐1‐mediated ROS reduction and could be an efficient modulator of host response in the treatment of periodontal disease.
ISSN:0022-3492
1943-3670
DOI:10.1902/jop.2012.120180