Loading…
Optimal design of flood-control multi-reservoir system on a watershed scale
Flood events have the highest damage costs and losses among natural hazards. There are different types of measures to mitigate flood damage costs and their negative consequences. Application of flood-control reservoirs or detention dams, as one of the main measures, may decrease devastating flood ef...
Saved in:
Published in: | Natural hazards (Dordrecht) 2012-09, Vol.63 (2), p.629-646 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flood events have the highest damage costs and losses among natural hazards. There are different types of measures to mitigate flood damage costs and their negative consequences. Application of flood-control reservoirs or detention dams, as one of the main measures, may decrease devastating flood effects or even may cause to intensify flood damages in the watershed by a poor design with tremendous construction costs. Optimal design of a flood-control multi-reservoir system can simultaneously minimize investment costs of constructions and potential flood damage costs. This study proposes a simulation-based optimization approach to optimize the design of multi-reservoirs for flood control in the watershed by coupling the MIKE-11 hydrodynamic model and the NSGA-II multi-objective optimization model. The present approach provides the Pareto optimal solutions between two conflict objectives of minimizing total investment costs and the expected flood damage costs in the watershed. Application of the proposed model for a small watershed in central part of Iran as a case study shows that optimal designs of multi-reservoir systems can efficiently reduce construction costs, flood peaks and their corresponding damage costs at the downstream reaches of the basin. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-012-0169-6 |