Loading…

The impact of commonly used approximations on the computation of the Seebeck coefficient and mobility of polar semiconductors

Seebeck coefficient modeling and measurement has important applications in direct thermal to electrical energy conversion and solid-state physics. The computations of the Seebeck coefficient and mobility of polar semiconductors in the literature often employ certain approximations, notably the relax...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2012-10, Vol.101 (17)
Main Authors: Ramu, Ashok T., Bowers, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Seebeck coefficient modeling and measurement has important applications in direct thermal to electrical energy conversion and solid-state physics. The computations of the Seebeck coefficient and mobility of polar semiconductors in the literature often employ certain approximations, notably the relaxation time approximation (RTA) and the truncation of the Boltzmann transport equation. We study the accuracy of these approximations as a function of the effective mass, temperature, and carrier concentration using a recently developed technique for rigorous solution of the Boltzmann transport equation. We find that the approximations give rise to considerable error in the computed Seebeck coefficients of heavily doped semiconductors with a low effective mass, and that the RTA is entirely inapplicable for the accurate computation of the mobility of several important materials.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4764517