Loading…
A Multi-Band Quadrature Clock Generator With High-Pass-Filtered Pulse Injection Technique
A high-pass-filtered (HPF) pulse injection technique is proposed to reduce spurs near the carrier signal due to injection locking. By using this technique, a multi-band quadrature clock generator consisting of a wide-frequency range injection-locked PLL and a frequency-selectable local buffer is dem...
Saved in:
Published in: | IEEE microwave and wireless components letters 2013-02, Vol.23 (2), p.96-98 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A high-pass-filtered (HPF) pulse injection technique is proposed to reduce spurs near the carrier signal due to injection locking. By using this technique, a multi-band quadrature clock generator consisting of a wide-frequency range injection-locked PLL and a frequency-selectable local buffer is demonstrated. The proposed clock generator was fabricated in a 65 nm CMOS. For a 100 MHz reference, the circuit can output 1.0, 2.0, and 4.0 GHz quadrature outputs with an eight-phase VCO and the buffer. It shows an 1 MHz-offset phase noise -105 dBc/Hz and a reference spur level of -50 dBc at 2.0 GHz, with enabling HPF pulse injection. The total power consumption is lower than 32 mW at 4 GHz. |
---|---|
ISSN: | 1531-1309 2771-957X 1558-1764 2771-9588 |
DOI: | 10.1109/LMWC.2013.2239634 |