Loading…

The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping

We establish some existence results for hemivariational inequalities of Stampacchia type involving an upper semicontinuous set-valued mapping on a bounded, closed and convex subset in ℝ n . We also derive a sufficient condition for the existence and boundedness of solution, without assuming boundedn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2013-03, Vol.156 (3), p.716-725
Main Authors: Zhang, Y. L., He, Y. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33
cites cdi_FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33
container_end_page 725
container_issue 3
container_start_page 716
container_title Journal of optimization theory and applications
container_volume 156
creator Zhang, Y. L.
He, Y. R.
description We establish some existence results for hemivariational inequalities of Stampacchia type involving an upper semicontinuous set-valued mapping on a bounded, closed and convex subset in ℝ n . We also derive a sufficient condition for the existence and boundedness of solution, without assuming boundedness of the constraint set.
doi_str_mv 10.1007/s10957-012-0072-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323225745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895895551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWP98AG8LXrxEJ9nEJEcpaguVHqznkN3N1pRtdpvsFuynN2U9iOBpeMPvDfMeQjcE7gmAeIgEFBcYCMVJUnw4QRPCRY6pFPIUTQAoxTnN1Tm6iHEDAEoKNkHL1afNZnbr9iY407vWmyabe7sbTON6Z2NWtyEzPvvoOhuy90SWre-dH9ohJtnjvWkGW2VvpuucX1-hs9o00V7_zEu0enleTWd4sXydT58WuMyZ6rFgj6VhFa9YndcFrQgvANKKK1bUrLBW1ooqQiSIqiApIRFWMUqLsoSqzPNLdDee7UK7G2zs9dbF0jaN8TY9pkmKSikXjCf09g-6aYeQYiaKSqkkZ0ASRUaqDG2Mwda6C25rwpcmoI8N67FhnRrWx4b1IXno6ImJ9Wsbfl3-1_QNXZt-lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288985401</pqid></control><display><type>article</type><title>The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Zhang, Y. L. ; He, Y. R.</creator><creatorcontrib>Zhang, Y. L. ; He, Y. R.</creatorcontrib><description>We establish some existence results for hemivariational inequalities of Stampacchia type involving an upper semicontinuous set-valued mapping on a bounded, closed and convex subset in ℝ n . We also derive a sufficient condition for the existence and boundedness of solution, without assuming boundedness of the constraint set.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-012-0072-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Engineering ; Euclidean space ; Inequalities ; Inequality ; Mapping ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechanics ; Operations Research/Decision Theory ; Optimization ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2013-03, Vol.156 (3), p.716-725</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33</citedby><cites>FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1288985401/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1288985401?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhang, Y. L.</creatorcontrib><creatorcontrib>He, Y. R.</creatorcontrib><title>The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We establish some existence results for hemivariational inequalities of Stampacchia type involving an upper semicontinuous set-valued mapping on a bounded, closed and convex subset in ℝ n . We also derive a sufficient condition for the existence and boundedness of solution, without assuming boundedness of the constraint set.</description><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Engineering</subject><subject>Euclidean space</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LAzEQxYMoWP98AG8LXrxEJ9nEJEcpaguVHqznkN3N1pRtdpvsFuynN2U9iOBpeMPvDfMeQjcE7gmAeIgEFBcYCMVJUnw4QRPCRY6pFPIUTQAoxTnN1Tm6iHEDAEoKNkHL1afNZnbr9iY407vWmyabe7sbTON6Z2NWtyEzPvvoOhuy90SWre-dH9ohJtnjvWkGW2VvpuucX1-hs9o00V7_zEu0enleTWd4sXydT58WuMyZ6rFgj6VhFa9YndcFrQgvANKKK1bUrLBW1ooqQiSIqiApIRFWMUqLsoSqzPNLdDee7UK7G2zs9dbF0jaN8TY9pkmKSikXjCf09g-6aYeQYiaKSqkkZ0ASRUaqDG2Mwda6C25rwpcmoI8N67FhnRrWx4b1IXno6ImJ9Wsbfl3-1_QNXZt-lQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Zhang, Y. L.</creator><creator>He, Y. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130301</creationdate><title>The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping</title><author>Zhang, Y. L. ; He, Y. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Engineering</topic><topic>Euclidean space</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y. L.</creatorcontrib><creatorcontrib>He, Y. R.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y. L.</au><au>He, Y. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>156</volume><issue>3</issue><spage>716</spage><epage>725</epage><pages>716-725</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We establish some existence results for hemivariational inequalities of Stampacchia type involving an upper semicontinuous set-valued mapping on a bounded, closed and convex subset in ℝ n . We also derive a sufficient condition for the existence and boundedness of solution, without assuming boundedness of the constraint set.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-012-0072-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2013-03, Vol.156 (3), p.716-725
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1323225745
source ABI/INFORM Global; Springer Link
subjects Applications of Mathematics
Banach spaces
Calculus of Variations and Optimal Control
Optimization
Engineering
Euclidean space
Inequalities
Inequality
Mapping
Mathematical models
Mathematics
Mathematics and Statistics
Mechanics
Operations Research/Decision Theory
Optimization
Studies
Theory of Computation
title The Hemivariational Inequalities for an Upper Semicontinuous Set-valued Mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hemivariational%20Inequalities%20for%20an%20Upper%20Semicontinuous%20Set-valued%20Mapping&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Zhang,%20Y.%20L.&rft.date=2013-03-01&rft.volume=156&rft.issue=3&rft.spage=716&rft.epage=725&rft.pages=716-725&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-012-0072-z&rft_dat=%3Cproquest_cross%3E2895895551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-746ca4d5d4f3fb2d15b006ca594bf4bee8f92911807db110017e9422bcc0dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1288985401&rft_id=info:pmid/&rfr_iscdi=true