Loading…
Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis
The far-field high-energy diffraction microscopy technique is presented in the context of high-energy synchrotron x-ray diffraction. For each grain in an illuminated polycrystalline volume, the volume-averaged lattice orientations, lattice strain tensors, and centre-of-mass (COM) coordinates may be...
Saved in:
Published in: | Journal of strain analysis for engineering design 2011-10, Vol.46 (7), p.527-547 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The far-field high-energy diffraction microscopy technique is presented in the context of high-energy synchrotron x-ray diffraction. For each grain in an illuminated polycrystalline volume, the volume-averaged lattice orientations, lattice strain tensors, and centre-of-mass (COM) coordinates may be determined to a high degree of precision: better than 0.05°, 1 × 10−4, and 0.1 pixel, respectively. Because the full lattice strain tensors are available, corresponding mean stress tensors may be calculated unambiguously using single-crystal elastic moduli. A novel formulation for orientation indexing and cell refinement is introduced and demonstrated using two examples: first, sequential indexing and lattice refinement of a single-crystal ruby standard with known COM coordinates; and second, indexing and refinement of simulated diffraction data from an aggregate of 819 individual grains using several sample rotation ranges and including the influence of experimental uncertainties. The speed of acquisition and penetration depth achievable with high-energy (that is, >50 keV) x-rays make this technique ideal for studies of strain/stress evolution in situ, as well as for residual stress analysis. |
---|---|
ISSN: | 0309-3247 2041-3130 |
DOI: | 10.1177/0309324711405761 |