Loading…
Coherent optical three-dimensional spectrum-correlation processing of wave signals based on space-time integration
The architectures of classical analog coherent optical (ACO) spectrum analyzers and correlators are not designed to process the wave signal as a whole, i.e., simultaneously in three dimensions. In this paper, the theory of ACO three-dimensional direct spectrum-correlation processing of spatial-tempo...
Saved in:
Published in: | Applied optics (2004) 2012-11, Vol.51 (33), p.7900-7909 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The architectures of classical analog coherent optical (ACO) spectrum analyzers and correlators are not designed to process the wave signal as a whole, i.e., simultaneously in three dimensions. In this paper, the theory of ACO three-dimensional direct spectrum-correlation processing of spatial-temporal optical replicas (copies) of wave signals is discussed. In the single-stage and two-stage ACO systems, the spatial power spectrum and spatial correlation function of the wave signal (envelope) are obtained on the basis of space-time integration. The geometry of the final compressed signal in the output plane of either optical system allows one to evaluate the angle of wave arrival. The wave signal to be processed can theoretically have any form (due to autocorrelation properties of the systems) and an unlimited duration (due to time integration of wave energy and possibility of electronic subtraction of the intermediate bias terms of the time integration). |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.51.007900 |