Loading…
Efficient shape matching for Chinese calligraphic character retrieval
An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retri...
Saved in:
Published in: | Frontiers of information technology & electronic engineering 2011-11, Vol.12 (11), p.873-884 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443 |
container_end_page | 884 |
container_issue | 11 |
container_start_page | 873 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 12 |
creator | Lu, Wei-ming Wu, Jiang-qin Wei, Bao-gang Zhuang, Yue-ting |
description | An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval. |
doi_str_mv | 10.1631/jzus.C1100005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323232390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39896655</cqvip_id><sourcerecordid>2918722407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEtPYkXsRFy4dTdImzRFV40OaxAEO3KI0ddpMXdslHRL8ejI2hoSEfbAlP35tvQhd4mSOGcW3q8-tnxcYJyGyEzTBORMxFuzt9Nhn-BzNvF_tEJplgtEJWiyMsdpCN0a-UQNEazXqxnZ1ZHoXFaEDD5FWbWtrp4bG6kg3yik9goscjM7Cu2ov0JlRrYfZoU7Ry_3itXiMl88PT8XdMtaU0TEmTFSCi5QzrkoDymjGSFblGTGp1lUZ5jjhKdEpcMMrVpYVlFjnmpZVmtIputmrDq7fbMGPcm29hrZVHfRbLzEl3ymSgF7_QVf91nXhN0kEzjkhacIDFe8p7XrvHRg5OLtW7kPiRO5clTtX5Y-rgZ_veR-4rgb3q_rfwtXhQNN39SbsHC9QkQvGsox-AbnOhZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722407</pqid></control><display><type>article</type><title>Efficient shape matching for Chinese calligraphic character retrieval</title><source>Springer Link</source><creator>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</creator><creatorcontrib>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</creatorcontrib><description>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1100005</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Algorithms ; Character recognition ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Digital systems ; Electrical Engineering ; Electronics and Microelectronics ; Explosions ; Handwriting recognition ; Instrumentation ; Mathematical analysis ; Networks ; Optical character recognition ; Optimization ; Parameter sensitivity ; Retrieval ; Vectors (mathematics)</subject><ispartof>Frontiers of information technology & electronic engineering, 2011-11, Vol.12 (11), p.873-884</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</citedby><cites>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lu, Wei-ming</creatorcontrib><creatorcontrib>Wu, Jiang-qin</creatorcontrib><creatorcontrib>Wei, Bao-gang</creatorcontrib><creatorcontrib>Zhuang, Yue-ting</creatorcontrib><title>Efficient shape matching for Chinese calligraphic character retrieval</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</description><subject>Algorithms</subject><subject>Character recognition</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Digital systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Explosions</subject><subject>Handwriting recognition</subject><subject>Instrumentation</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Optical character recognition</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Retrieval</subject><subject>Vectors (mathematics)</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEtPYkXsRFy4dTdImzRFV40OaxAEO3KI0ddpMXdslHRL8ejI2hoSEfbAlP35tvQhd4mSOGcW3q8-tnxcYJyGyEzTBORMxFuzt9Nhn-BzNvF_tEJplgtEJWiyMsdpCN0a-UQNEazXqxnZ1ZHoXFaEDD5FWbWtrp4bG6kg3yik9goscjM7Cu2ov0JlRrYfZoU7Ry_3itXiMl88PT8XdMtaU0TEmTFSCi5QzrkoDymjGSFblGTGp1lUZ5jjhKdEpcMMrVpYVlFjnmpZVmtIputmrDq7fbMGPcm29hrZVHfRbLzEl3ymSgF7_QVf91nXhN0kEzjkhacIDFe8p7XrvHRg5OLtW7kPiRO5clTtX5Y-rgZ_veR-4rgb3q_rfwtXhQNN39SbsHC9QkQvGsox-AbnOhZE</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Lu, Wei-ming</creator><creator>Wu, Jiang-qin</creator><creator>Wei, Bao-gang</creator><creator>Zhuang, Yue-ting</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Efficient shape matching for Chinese calligraphic character retrieval</title><author>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Character recognition</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Digital systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Explosions</topic><topic>Handwriting recognition</topic><topic>Instrumentation</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Optical character recognition</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Retrieval</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei-ming</creatorcontrib><creatorcontrib>Wu, Jiang-qin</creatorcontrib><creatorcontrib>Wei, Bao-gang</creatorcontrib><creatorcontrib>Zhuang, Yue-ting</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei-ming</au><au>Wu, Jiang-qin</au><au>Wei, Bao-gang</au><au>Zhuang, Yue-ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient shape matching for Chinese calligraphic character retrieval</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>12</volume><issue>11</issue><spage>873</spage><epage>884</epage><pages>873-884</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C1100005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2011-11, Vol.12 (11), p.873-884 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323232390 |
source | Springer Link |
subjects | Algorithms Character recognition Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Digital systems Electrical Engineering Electronics and Microelectronics Explosions Handwriting recognition Instrumentation Mathematical analysis Networks Optical character recognition Optimization Parameter sensitivity Retrieval Vectors (mathematics) |
title | Efficient shape matching for Chinese calligraphic character retrieval |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20shape%20matching%20for%20Chinese%20calligraphic%20character%20retrieval&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Lu,%20Wei-ming&rft.date=2011-11-01&rft.volume=12&rft.issue=11&rft.spage=873&rft.epage=884&rft.pages=873-884&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1100005&rft_dat=%3Cproquest_cross%3E2918722407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918722407&rft_id=info:pmid/&rft_cqvip_id=39896655&rfr_iscdi=true |