Loading…

Efficient shape matching for Chinese calligraphic character retrieval

An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retri...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of information technology & electronic engineering 2011-11, Vol.12 (11), p.873-884
Main Authors: Lu, Wei-ming, Wu, Jiang-qin, Wei, Bao-gang, Zhuang, Yue-ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443
cites cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443
container_end_page 884
container_issue 11
container_start_page 873
container_title Frontiers of information technology & electronic engineering
container_volume 12
creator Lu, Wei-ming
Wu, Jiang-qin
Wei, Bao-gang
Zhuang, Yue-ting
description An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.
doi_str_mv 10.1631/jzus.C1100005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323232390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39896655</cqvip_id><sourcerecordid>2918722407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEtPYkXsRFy4dTdImzRFV40OaxAEO3KI0ddpMXdslHRL8ejI2hoSEfbAlP35tvQhd4mSOGcW3q8-tnxcYJyGyEzTBORMxFuzt9Nhn-BzNvF_tEJplgtEJWiyMsdpCN0a-UQNEazXqxnZ1ZHoXFaEDD5FWbWtrp4bG6kg3yik9goscjM7Cu2ov0JlRrYfZoU7Ry_3itXiMl88PT8XdMtaU0TEmTFSCi5QzrkoDymjGSFblGTGp1lUZ5jjhKdEpcMMrVpYVlFjnmpZVmtIputmrDq7fbMGPcm29hrZVHfRbLzEl3ymSgF7_QVf91nXhN0kEzjkhacIDFe8p7XrvHRg5OLtW7kPiRO5clTtX5Y-rgZ_veR-4rgb3q_rfwtXhQNN39SbsHC9QkQvGsox-AbnOhZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722407</pqid></control><display><type>article</type><title>Efficient shape matching for Chinese calligraphic character retrieval</title><source>Springer Link</source><creator>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</creator><creatorcontrib>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</creatorcontrib><description>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1100005</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Algorithms ; Character recognition ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Digital systems ; Electrical Engineering ; Electronics and Microelectronics ; Explosions ; Handwriting recognition ; Instrumentation ; Mathematical analysis ; Networks ; Optical character recognition ; Optimization ; Parameter sensitivity ; Retrieval ; Vectors (mathematics)</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2011-11, Vol.12 (11), p.873-884</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</citedby><cites>FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lu, Wei-ming</creatorcontrib><creatorcontrib>Wu, Jiang-qin</creatorcontrib><creatorcontrib>Wei, Bao-gang</creatorcontrib><creatorcontrib>Zhuang, Yue-ting</creatorcontrib><title>Efficient shape matching for Chinese calligraphic character retrieval</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</description><subject>Algorithms</subject><subject>Character recognition</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Digital systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Explosions</subject><subject>Handwriting recognition</subject><subject>Instrumentation</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Optical character recognition</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Retrieval</subject><subject>Vectors (mathematics)</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEtPYkXsRFy4dTdImzRFV40OaxAEO3KI0ddpMXdslHRL8ejI2hoSEfbAlP35tvQhd4mSOGcW3q8-tnxcYJyGyEzTBORMxFuzt9Nhn-BzNvF_tEJplgtEJWiyMsdpCN0a-UQNEazXqxnZ1ZHoXFaEDD5FWbWtrp4bG6kg3yik9goscjM7Cu2ov0JlRrYfZoU7Ry_3itXiMl88PT8XdMtaU0TEmTFSCi5QzrkoDymjGSFblGTGp1lUZ5jjhKdEpcMMrVpYVlFjnmpZVmtIputmrDq7fbMGPcm29hrZVHfRbLzEl3ymSgF7_QVf91nXhN0kEzjkhacIDFe8p7XrvHRg5OLtW7kPiRO5clTtX5Y-rgZ_veR-4rgb3q_rfwtXhQNN39SbsHC9QkQvGsox-AbnOhZE</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Lu, Wei-ming</creator><creator>Wu, Jiang-qin</creator><creator>Wei, Bao-gang</creator><creator>Zhuang, Yue-ting</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Efficient shape matching for Chinese calligraphic character retrieval</title><author>Lu, Wei-ming ; Wu, Jiang-qin ; Wei, Bao-gang ; Zhuang, Yue-ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Character recognition</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Digital systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Explosions</topic><topic>Handwriting recognition</topic><topic>Instrumentation</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Optical character recognition</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Retrieval</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei-ming</creatorcontrib><creatorcontrib>Wu, Jiang-qin</creatorcontrib><creatorcontrib>Wei, Bao-gang</creatorcontrib><creatorcontrib>Zhuang, Yue-ting</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei-ming</au><au>Wu, Jiang-qin</au><au>Wei, Bao-gang</au><au>Zhuang, Yue-ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient shape matching for Chinese calligraphic character retrieval</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>12</volume><issue>11</issue><spage>873</spage><epage>884</epage><pages>873-884</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C1100005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2011-11, Vol.12 (11), p.873-884
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_proquest_miscellaneous_1323232390
source Springer Link
subjects Algorithms
Character recognition
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Digital systems
Electrical Engineering
Electronics and Microelectronics
Explosions
Handwriting recognition
Instrumentation
Mathematical analysis
Networks
Optical character recognition
Optimization
Parameter sensitivity
Retrieval
Vectors (mathematics)
title Efficient shape matching for Chinese calligraphic character retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20shape%20matching%20for%20Chinese%20calligraphic%20character%20retrieval&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Lu,%20Wei-ming&rft.date=2011-11-01&rft.volume=12&rft.issue=11&rft.spage=873&rft.epage=884&rft.pages=873-884&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1100005&rft_dat=%3Cproquest_cross%3E2918722407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-269d9794767abfeafc6625d852f4ccdb26910742c4e7f7d6bbdeb1c8c3bd443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918722407&rft_id=info:pmid/&rft_cqvip_id=39896655&rfr_iscdi=true