Loading…
Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge
A flexible, compressible, hydrophobic, ice-repelling, floatable, and conductive carbon nanotube (CNT)-polydimethylsiloxane (PDMS) sponge is presented. The microporous sponge-like PDMS scaffold fabricated with a sugar cube template is capable of CNT uptake. The CNT-PDMS sponge (CPS) is deformable and...
Saved in:
Published in: | Applied physics letters 2013-02, Vol.102 (5) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A flexible, compressible, hydrophobic, ice-repelling, floatable, and conductive carbon nanotube (CNT)-polydimethylsiloxane (PDMS) sponge is presented. The microporous sponge-like PDMS scaffold fabricated with a sugar cube template is capable of CNT uptake. The CNT-PDMS sponge (CPS) is deformable and compressible up to 90%. The Young's modulus varies from 22 KPa to 200 KPa depending on the applied strain. The conductive pathways via the CNT network increase with compressive strain similar to a variable resistor or pressure sensor. The softness of the CPS can be utilized for artificial skin to grip sensitive objects. In addition, the contact angle of water droplets on CPS shows 141°, and thus the hydrophobic nature of the CPS can be exploited as a floating electrode. Furthermore, the hydrophobicity is maintained below freezing temperature, allowing an ice-repelling electrode. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4790437 |