Loading…
Physical modeling of the electromechanical behavior of polar heterogeneous polymers
Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic functi...
Saved in:
Published in: | Journal of applied physics 2012-12, Vol.112 (11) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 112 |
creator | Diguet, Gildas Bogner, Agnes Chenal, Jean-Marc Cavaille, Jean-Yves |
description | Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature. |
doi_str_mv | 10.1063/1.4766280 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323237046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323237046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_8EsdTH1JplHspTiCwoK6jrcydx0RjJNTaZC_719cRYHDh-Hw2HslsOMQyUf-Kyoq0ooOGMTDkrndVnCOZsACJ4rXetLdpXSDwDnSuoJ-_zotqm36LMhtOT71TILLhs7ysiTHWMYyHa4OhANdfjXh7gn1sFjzDoaKYYlrShs0j7bDhTTNbtw6BPdnHzKvp-fvuav-eL95W3-uMitFGrMNTUt1EJUrgAqG0tcai60xJKgQOlEKXRbly2QRAuonHa8QFRUCGmJnJyyu2PvOobfDaXRDH2y5D0e9hguxU41FNUOvT-iNoaUIjmzjv2AcWs4mP1xhpvTcfIfDmZhLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323237046</pqid></control><display><type>article</type><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</creator><creatorcontrib>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</creatorcontrib><description>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4766280</identifier><language>eng</language><subject>Dispersing ; Electric fields ; Electrodes ; Electrostriction ; Heterogeneity ; Mathematical models ; Nanostructure ; Phase separation</subject><ispartof>Journal of applied physics, 2012-12, Vol.112 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</citedby><cites>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Diguet, Gildas</creatorcontrib><creatorcontrib>Bogner, Agnes</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Cavaille, Jean-Yves</creatorcontrib><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><title>Journal of applied physics</title><description>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</description><subject>Dispersing</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrostriction</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Phase separation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_8EsdTH1JplHspTiCwoK6jrcydx0RjJNTaZC_719cRYHDh-Hw2HslsOMQyUf-Kyoq0ooOGMTDkrndVnCOZsACJ4rXetLdpXSDwDnSuoJ-_zotqm36LMhtOT71TILLhs7ysiTHWMYyHa4OhANdfjXh7gn1sFjzDoaKYYlrShs0j7bDhTTNbtw6BPdnHzKvp-fvuav-eL95W3-uMitFGrMNTUt1EJUrgAqG0tcai60xJKgQOlEKXRbly2QRAuonHa8QFRUCGmJnJyyu2PvOobfDaXRDH2y5D0e9hguxU41FNUOvT-iNoaUIjmzjv2AcWs4mP1xhpvTcfIfDmZhLQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Diguet, Gildas</creator><creator>Bogner, Agnes</creator><creator>Chenal, Jean-Marc</creator><creator>Cavaille, Jean-Yves</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><author>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dispersing</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrostriction</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diguet, Gildas</creatorcontrib><creatorcontrib>Bogner, Agnes</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Cavaille, Jean-Yves</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diguet, Gildas</au><au>Bogner, Agnes</au><au>Chenal, Jean-Marc</au><au>Cavaille, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</atitle><jtitle>Journal of applied physics</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</abstract><doi>10.1063/1.4766280</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2012-12, Vol.112 (11) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323237046 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Dispersing Electric fields Electrodes Electrostriction Heterogeneity Mathematical models Nanostructure Phase separation |
title | Physical modeling of the electromechanical behavior of polar heterogeneous polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20modeling%20of%20the%20electromechanical%20behavior%20of%20polar%20heterogeneous%20polymers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Diguet,%20Gildas&rft.date=2012-12-01&rft.volume=112&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4766280&rft_dat=%3Cproquest_cross%3E1323237046%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323237046&rft_id=info:pmid/&rfr_iscdi=true |