Loading…

Physical modeling of the electromechanical behavior of polar heterogeneous polymers

Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic functi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2012-12, Vol.112 (11)
Main Authors: Diguet, Gildas, Bogner, Agnes, Chenal, Jean-Marc, Cavaille, Jean-Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3
cites cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 112
creator Diguet, Gildas
Bogner, Agnes
Chenal, Jean-Marc
Cavaille, Jean-Yves
description Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.
doi_str_mv 10.1063/1.4766280
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323237046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323237046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_8EsdTH1JplHspTiCwoK6jrcydx0RjJNTaZC_719cRYHDh-Hw2HslsOMQyUf-Kyoq0ooOGMTDkrndVnCOZsACJ4rXetLdpXSDwDnSuoJ-_zotqm36LMhtOT71TILLhs7ysiTHWMYyHa4OhANdfjXh7gn1sFjzDoaKYYlrShs0j7bDhTTNbtw6BPdnHzKvp-fvuav-eL95W3-uMitFGrMNTUt1EJUrgAqG0tcai60xJKgQOlEKXRbly2QRAuonHa8QFRUCGmJnJyyu2PvOobfDaXRDH2y5D0e9hguxU41FNUOvT-iNoaUIjmzjv2AcWs4mP1xhpvTcfIfDmZhLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323237046</pqid></control><display><type>article</type><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</creator><creatorcontrib>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</creatorcontrib><description>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4766280</identifier><language>eng</language><subject>Dispersing ; Electric fields ; Electrodes ; Electrostriction ; Heterogeneity ; Mathematical models ; Nanostructure ; Phase separation</subject><ispartof>Journal of applied physics, 2012-12, Vol.112 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</citedby><cites>FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Diguet, Gildas</creatorcontrib><creatorcontrib>Bogner, Agnes</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Cavaille, Jean-Yves</creatorcontrib><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><title>Journal of applied physics</title><description>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</description><subject>Dispersing</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrostriction</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Phase separation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_8EsdTH1JplHspTiCwoK6jrcydx0RjJNTaZC_719cRYHDh-Hw2HslsOMQyUf-Kyoq0ooOGMTDkrndVnCOZsACJ4rXetLdpXSDwDnSuoJ-_zotqm36LMhtOT71TILLhs7ysiTHWMYyHa4OhANdfjXh7gn1sFjzDoaKYYlrShs0j7bDhTTNbtw6BPdnHzKvp-fvuav-eL95W3-uMitFGrMNTUt1EJUrgAqG0tcai60xJKgQOlEKXRbly2QRAuonHa8QFRUCGmJnJyyu2PvOobfDaXRDH2y5D0e9hguxU41FNUOvT-iNoaUIjmzjv2AcWs4mP1xhpvTcfIfDmZhLQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Diguet, Gildas</creator><creator>Bogner, Agnes</creator><creator>Chenal, Jean-Marc</creator><creator>Cavaille, Jean-Yves</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</title><author>Diguet, Gildas ; Bogner, Agnes ; Chenal, Jean-Marc ; Cavaille, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dispersing</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrostriction</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diguet, Gildas</creatorcontrib><creatorcontrib>Bogner, Agnes</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Cavaille, Jean-Yves</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diguet, Gildas</au><au>Bogner, Agnes</au><au>Chenal, Jean-Marc</au><au>Cavaille, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical modeling of the electromechanical behavior of polar heterogeneous polymers</atitle><jtitle>Journal of applied physics</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Some polymers exhibit very high electromechanical activity, and there is a lack of physical understanding of the mechanisms at the origin of this behavior. In amorphous or slightly crystalline polymers, piezoelectric effect is negligible and the contributions to electrostriction are quadratic function of the applied electric field. These contributions are extrinsic and intrinsic, namely, (i) the electrostatic pressure resulting from the two electrodes attraction (Maxwell effect) and (ii) dipoles-electric field interactions resulting in a mechanism so-called electrostriction. The later contribution can reach much higher value, i.e., by a factor 1000, than the Maxwell effect in some polyurethanes. On the other hand, dipoles-dipoles interactions are known to play a negligible role in homogeneous media. In this work, it is shown that both heterogeneities of local stiffness and dielectric constants are responsible for this unexpected behavior. Nano-heterogeneities may result from phase separation in block copolymers, or can be introduced by dispersing nanoparticles within a matrix. A theoretical approach based on dipole-electric field gradient is developed and numerical data are compared with experimental data from the literature.</abstract><doi>10.1063/1.4766280</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-12, Vol.112 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_1323237046
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Dispersing
Electric fields
Electrodes
Electrostriction
Heterogeneity
Mathematical models
Nanostructure
Phase separation
title Physical modeling of the electromechanical behavior of polar heterogeneous polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20modeling%20of%20the%20electromechanical%20behavior%20of%20polar%20heterogeneous%20polymers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Diguet,%20Gildas&rft.date=2012-12-01&rft.volume=112&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4766280&rft_dat=%3Cproquest_cross%3E1323237046%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-9ebd07226f40e5bce1391293a5e04a3f2529d75d0e3ac0a8f9f14aa8e423ceef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323237046&rft_id=info:pmid/&rfr_iscdi=true