Loading…
Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm
We demonstrated Schottky-barrier solar cell using layer-structured semiconductor tungsten disulfide (WS2) nanofilm (NF) as the photo-active material. WS2 NFs were synthesized by chemical-vapor-deposition initiated on the surface of tungsten. The growth of WS2 NF was confirmed by Raman signature peak...
Saved in:
Published in: | Applied physics letters 2012-12, Vol.101 (26) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrated Schottky-barrier solar cell using layer-structured semiconductor tungsten disulfide (WS2) nanofilm (NF) as the photo-active material. WS2 NFs were synthesized by chemical-vapor-deposition initiated on the surface of tungsten. The growth of WS2 NF was confirmed by Raman signature peaks representing active modes of E12g (351.5 cm−1) for in-plane and A1g (420.1 cm−1) for out-of-plane atomic vibrations, respectively. The ITO/WS2/Au Schottky-barrier solar cell was demonstrated by a layer-enabled assembling process, showing a photo-conversion efficiency of 1.7% and effective photon absorption in the wavelength range of 350 nm–950 nm. The Mott-Schottky characteristic suggests low density of bulk and interface defects in WS2 NF attributed to surfaces with negligible amount of dangling bonds which is the essential nature of layered semiconductors. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4773525 |