Loading…
Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives
Bulk heterojunction (BHJ) solar cells, fabricated by spin casting processes, with phase-separated small molecules including a phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM), have b...
Saved in:
Published in: | Applied physics letters 2012-12, Vol.101 (26) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bulk heterojunction (BHJ) solar cells, fabricated by spin casting processes, with phase-separated small molecules including a phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM), have been demonstrated to have a power conversion efficiency exceeding 4.1%. The C6PcH2:PCBM BHJ surface morphology and the phase separation have been controlled by utilizing processing additives in various solvents. The effects of the processing additives on the crystallization of the discotic C6PcH2 columns in hexagonal structures have been discussed. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4773519 |